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Energy cost and lower leg muscle activities
during erect bipedal locomotion under
hyperoxia
Daijiro Abe1* , Yoshiyuki Fukuoka2, Takafumi Maeda3 and Masahiro Horiuchi4

Abstract

Background: Energy cost of transport per unit distance (CoT) against speed shows U-shaped fashion in walking
and linear fashion in running, indicating that there exists a specific walking speed minimizing the CoT, being
defined as economical speed (ES). Another specific gait speed is the intersection speed between both fashions,
being called energetically optimal transition speed (EOTS). We measured the ES, EOTS, and muscle activities during
walking and running at the EOTS under hyperoxia (40% fraction of inspired oxygen) on the level and uphill
gradients (+ 5%).

Methods: Oxygen consumption ð _VO2Þ and carbon dioxide output ð _VCO2Þ were measured to calculate the CoT
values at eight walking speeds (2.4–7.3 km h−1) and four running speeds (7.3–9.4 km h− 1) in 17 young males.
Electromyography was recorded from gastrocnemius medialis, gastrocnemius lateralis (GL), and tibialis anterior (TA) to
evaluate muscle activities. Mean power frequency (MPF) was obtained to compare motor unit recruitment patterns
between walking and running.

Results: _VO2, _VCO2, and CoT values were lower under hyperoxia than normoxia at faster walking speeds and any
running speeds. A faster ES on the uphill gradient and slower EOTS on both gradients were observed under
hyperoxia than normoxia. GL and TA activities became lower when switching from walking to running at the EOTS
under both FiO2 conditions on both gradients, so did the MPF in the TA.

Conclusions: ES and EOTS were influenced by reduced metabolic demands induced by hyperoxia. GL and TA
activities in association with a lower shift of motor unit recruitment patterns in the TA would be related to the gait
selection when walking or running at the EOTS.

Trial registration: UMIN000017690 (R000020501). Registered May 26, 2015, before the first trial.
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Background
Erect bipedalism is an intrinsic gait pattern in humans.
One of the most important biological benefits of the
erect bipedalism has been reported to be economical for
walking [1] and running [2]. There is a U-shaped rela-
tionship between the energy cost of transport per unit
distance (CoT; J kg−1 km−1) and gait speed (v; km h−1)
during walking as shown in Additional file 1: Figure S1.
This means that there exists a specific walking speed

minimizing the CoT. This specific walking speed is known
as the economical speed (ES; km h−1) [3], which is close
to preferred walking speed in healthy populations [4]. The
most important factor for explaining the economical
speed (ES) has been explained by the transfer efficiency
between kinetic energy and gravitational potential energy
[5, 6]; however, other factors, such as leg length [7, 8] and
gravity [9], have also been considered. Our recent study
showed an increase in the CoT values during walking
under severe hypoxia (fraction of inspired oxygen; FiO2

(%) = 11%) compared to normoxia and moderate hypoxia
at faster walking speeds [10]. This finding arose from a
leftward (slower) shift of the U-shaped CoT-v relationship,
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resulting in a slower ES under severe hypoxia. In
other words, the ES could be influenced by an alter-
ation of the cardiorespiratory responses induced by
different O2 conditions.
A linear relationship exists between the CoT and run-

ning speeds, meaning that there is an intersection be-
tween the U-shaped and linear CoT-v relationships, and
this intersection is termed the “energetically optimal
transition speed” (EOTS; km h−1) [11]. Since gait transi-
tion is triggered by the CoT [12, 13], the EOTS should
relate to the gait transition. This concept has been
widely accepted in discussions of bipedalism in other
species [14, 15]. These results suggested that the CoT,
which can strongly influence the ES and EOTS, may
decrease by an acute hyperoxic exposure compared to a
normoxic condition. Indeed, hyperoxia depresses periph-
eral chemoreceptor, resulting in a decrease in ventilatory
response [16, 17]. As far as we know, the ES and/or
EOTS have not been measured under different O2 con-
ditions except for our recent hypoxic studies [10, 18].
Saving the whole-body energy expenditure at a given gait
speed can provide an effective use of endurance capacity,
that is, a possible combination of the rightward (faster)
and downward (lesser metabolic) shifts of the U-shaped
and linear CoT-v relationships will occur under hyper-
oxia relative to normoxia (Additional file 1: Figure S1). It
is hypothesized that both ES and EOTS will be faster
under hyperoxia than normoxia.
It has also been debated whether the EOTS is respon-

sible for the natural gait transition [11, 19–22]. In asso-
ciation with the metabolic studies, several biomechanical
studies reported that an abrupt increase in the tibialis
anterior (TA) activity during walking can be another
potential trigger for walk-run transition, although the
TA mainly activates in the swing phase [23–26]. Consid-
ering these previous studies, gait selection would be
dependent on both minimizations of the whole-body
energy expenditure and muscular activity of the TA. We
recently observed a decrease in muscle activity and
lower shift of the mean power frequency (MPF; Hz) in
the TA when switching from walking to running at the
EOTS on the level and uphill gradients [18]. These re-
sults observed under normoxia (20.9% FiO2) and moder-
ate hypoxia (15% FiO2) suggested that TA activity and
its motor unit recruitment pattern were related to gait
selection at the EOTS. Gastrocnemius medialis (GM)
and lateralis (GL), antagonists of the TA, should also be
examined, because these plantar flexors are substantially
responsible for the forward acceleration [27].
In contrast to hypoxia, motor unit firing rates of the

lower leg extremities increased under hyperoxia in com-
parison with normoxia [28]. It was also hypothesized
that muscle activities and MPF would be higher under
hyperoxia than normoxia during walking and running at

the EOTS due to a presumably higher recruitment of
glycolytic fibers. To test these hypotheses, our present
study examined the effects of moderate hyperoxia
(40% FiO2) on the ES and EOTS on the level and uphill
gradients, because different gradient conditions would
induce different leg muscle activation patterns. And then,
muscle activity and motor unit recruitment patterns of the
lower leg extremities were compared between walking and
running at the EOTS under different FiO2 and gradient
conditions.

Methods
Participants
The mean age, height, and body mass of 17 active male
participants were 19.9 ± 0.9 years old, 1.69 ± 0.06 m, and
60.1 ± 7.9 kg, respectively (mean ± standard deviation; SD).
In accordance with the Declaration of Helsinki, all partici-
pants were provided all information about the purpose and
experimental protocols; a written informed consent was
obtained from all participants. An ethical committee
established in Kyushu Sangyo University approved all
procedures of this study (H28-0001).

Protocol
The FiO2 was set under normoxia (20.9% FiO2) and
hyperoxia (40.0 ± 0.3% FiO2). The participants performed
one of four cardiorespiratory measurements (2 FiO2 con-
ditions × 2 gradients) once a day in random order. On
each measurement day, they continuously walked and ran
on a motor-driven treadmill (LABORDO LXE1200,
Senoh, Japan) with a freely chosen step frequency at eight
walking speeds (2.4, 3.1, 3.8, 4.5, 5.2, 5.9, 6.6, and
7.3 km h−1) on the level (± 0%) or uphill (+ 5%) gradients.
Four running speeds (7.3, 8.0, 8.7, and 9.4 km h−1) were
provided for running on both gradients, and 1 min stand-
ing rest was inserted among each running stage [18]. Four
minutes were provided for each stage. These multiple gait
speeds are enough to approximating reliable U-shaped
and linear CoT-v relationships, contributing to a reliable
evaluation of the individual ES and EOTS. One of the par-
ticipants could not accomplish walking at 7.3 km h−1 on
the uphill gradient and running at more than 8.0 km h−1,
so that 6.9 km h− 1 were evaluated for uphill walking in-
stead of 7.3 km h−1. For uphill running of this participant,
6.6, 6.9, and 7.3 km h−1 were provided; thus, a linear
CoT-v relationship on this participant was evaluated with
three running speeds. Between walking and running, the
participants took a sitting rest for 7–8 min.

Cardiorespiratory measurement and analysis
Hyperoxic air was supplied by a large custom-made
Douglas bag (1000L; ARCO SYSTEM Inc., Kashiwa, Japan)
through a stopcock and 1.0 m suction hose into a
two-way non-rebreathing valve (Series 2700, Hans
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Rudolph Inc., USA). A two-way non-rebreathing valve
was connected with a volume transducer that was at-
tached to a gas collection mask. Before the hyperoxic
measurement, sampling tube from the gas analyzer was
inserted into the Douglas bag through a small cock to
check whether the filled hyperoxic gas was 40%. Oxygen
saturation of peripheral artery (SpO2; %) was also moni-
tored from a right index finger during the standing rest
(PULSOX-1, Konica Minolta, Japan). A stopcock was
opened to inspire the room air under normoxic condition.
During walking and running, SpO2 and pulse rate

were measured with the pulse oximeter from right
index finger at the final minute of each stage. The
pulse rate was regarded as the heart rate (HR; beats min−1).
Oxygen uptake ( _VO2 ; mL kg−1 min−1), carbon dioxide
output ( _VCO2; mL kg−1 min−1), ventilation ( _V E; L min−1),
and end-tidal PCO2 (PETCO2; mmHg) were continuously
measured with a computerized breath-by-breath system
(AE-310S, Minato Ltd., Japan). The FiO2 was measured
with a paramagnetic gas analyzer with a precision of ±
0.1% O2. This analyzing system allowed us to evaluate
end-tidal PO2 (PETO2) from 0 to 100%. Expired carbon di-
oxide fraction was measured with an infrared absorption
type carbon dioxide analyzer with a precision of ± 0.1%
CO2. Well-known gas concentrations (O2 15.22%, CO2

5.17%, and N2 79.61%) and room air were used for the
calibration of the gas analyzer. Each gait speed was kept
for 4 min, and a single sample of an average _VO2 and _V
CO2 for the final 2 min at each gait speed was used to cal-
culate the energy expenditure (EE; J kg−1 min−1) with the
following equation [29, 30]:

EE ¼ 4:186� 3:869� _VO2 þ 1:195� _VCO2
� � ð1Þ

The CoT (J kg−1 km−1) values were obtained as follows:

CoT ¼ EE� 1
60

� 1
minute speed

� 1000 ð2Þ

The CoT values were compared at each gait speed be-
tween normoxia and hyperoxia to evaluate whether the
U-shaped and/or linear CoT-v relationships shifted up-
ward or downward. A following quadratic equation was
applied for a relationship between CoT and walking
speeds [10, 18]:

CoT ¼ av2 þ bvþ c ð3Þ

where the coefficients a, b, and c are determined by the
least square regression with data obtained from eight
walking speeds. The ES can be obtained when a differential
function of the Eq. 3 (CoT’(v) = 2av+ b) is zero. Note that
an alteration of the ES was used to evaluate whether the
U-shaped CoT-v relationship shifted rightward (faster) when

walking under hyperoxia (Additional file 1: Figure S1).
The individual ES was determined as follows:

ES ¼ −bj j
2a

ð4Þ

A linear regression analysis was applied for the running
CoT-v relationship as follows [18].

CoT ¼ pvþ q ð5Þ
where the coefficients p and q are determined by the
least square regression with data from four running
speeds. The EOTS is obtained as the value v that makes
the Eqs. 3 and 5 equal. Rearranging Eqs. 3 and 5:

av2 þ b−pð Þvþ c−qð Þ ¼ 0 ð6Þ
Since b − p always takes negative value in Eq. 6, the

absolute |b − p| is regarded as the b − p. The following
equation gives two solutions of Eq. 6, and a faster one
was regarded as the EOTS [18].

EOTS ¼
− b−pð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b−pð Þ2−4a c−qð Þ

q

2a
ð7Þ

Electromyographic measurement and analysis
After determination of the individual EOTS, electro-
myography (EMG) was recorded from the TA, GM, and
GL during walking and running corresponding to the in-
dividual EOTS. Some previous simulation studies using
motion analysis examined only the GM and soleus, but
not GL [31]. Since ankle power generated by the soleus
mainly functions as a vertical body support [32, 33],
we investigated the GM and GL, but not the soleus.
One of the participants on the level gradient and two
of them on the uphill gradient were excluded from the
analysis, because incessant noises were permeated into
the EMG signal.
Pre-amplified active surface EMG electrode (BA-U410m,

Nihon Santeku Co., LTD, Japan) was placed on the target
muscles. Before electrode placement, the skin was shaved
and wiped with alcohol for degreasing. Electric wires were
secured using surgical tape not to disturb locomotion. Each
participant performed “level-walk,” “level-run,” “uphill--
walk,” and “uphill-run” corresponding to the individual
EOTS under normoxia. About 30 steps were sampled in
each experimental condition. Number of analyzed steps
and time duration in each condition were summarized in
Additional file 2: Table S1. Each EMG sampling was
separated with 1-min standing rest besides the treadmill.
When the participants completed a series of measurements
under normoxia, they started to inspire hyperoxic gas for
5–6 min during the standing rest to verify whether FiO2

reached 40% by monitoring the gas analyzer. Thereafter,
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the participants performed a series of hyperoxic EMG
measurements. The measurement order of gradient
(level or uphill) and gait pattern (walking or running)
was randomized, that is, around 15 min were sufficient for
the entire EMG measurements in one participant. There
was a possibility that the electric resistance between the
electrode and skin might alter during the measurements
due to sweating; however, it is known that the lower leg
extremities were one of the hardest skin areas to sweat
[34]. Considering these procedures and previous informa-
tion, effects of sweating on the EMG data could be min-
imal for the data interpretation.
The EMG signals were amplified with a bio-amplifier

(BA 1104B, Digitex Lab Co., LTD, Japan). Sampling
frequency was set at 2 kHz, and a band-pass filter
(8–500 Hz) was applied for the EMG signals. A foot
sensor (PS-20KASF4, Kyowa Electronic Instruments Co.,
LTD., Japan) was inserted into a right shoe to count the
number of steps, and its signal was amplified with a signal
conditioner (CDV-700A, Kyowa Electronic Instruments
Co., LTD, Japan). All signals from each sensor were simul-
taneously recorded with software (MaP 1038 ver.7.4,
Nihon Santeku Co., LTD, Japan).
The sum of the rectified EMG for a certain time dur-

ation was used in some previous studies [23–25]. Since
preferred step frequency is likely to be different between
walking and running at the EOTS, the sum of the rectified
EMG (μV sec) was normalized by time duration (sec) and
number of steps [18] using the same software at the
off-line mode. This parameter (μV step−1) was regarded as
the muscle activity. A fast Fourier transform was applied
for the stored band-pass filtered EMG data to evaluate
alterations of mean power frequency (MPF; Hz) when
switching from walking to running at the EOTS, because
MPF reflects motor unit recruitment patterns [35, 36].

Statistics
The ES and EOTS were compared between normoxia and
hyperoxia on each gradient using paired t test. Cardiore-
spiratory, CoT, and EMG values were compared with
two-way repeated measures ANOVA within participants
on each gradient using online software (ANOVA4 on the
Web, Copyright 2002 Kiriki Kenshi, Japan). If a significant
F value was obtained, Ryan’s post hoc test was applied to
the appropriate datasets. Its statistical power has been
reported to be equivalent to Tukey’s post hoc test [37],
and it can be used regardless of the data distribution [37].
Data were presented as mean ± SD. The statistical
significance was set less than 0.05 probability level.

Results
CoT, ES, and EOTS
During walking on the uphill gradient, the CoT
values were significantly lower under hyperoxia than

normoxia at faster gait speeds over 6.6 km h−1

(Fig. 1b). During running on both gradients, the
CoT values were significantly lower under hyperoxia
than normoxia (Fig. 1a, b). A significantly faster ES
was observed under hyperoxia (5.093 ± 0.297 km h−1)
than normoxia (4.844 ± 0.279 km h−1) on the uphill
gradient (Fig. 1d), while no significant difference was
found between hyperoxia (5.011 ± 0.224 km h−1) and
normoxia (5.001 ± 0.224 km h−1) on the level gradient
(Fig. 1c). The EOTS was significantly slower under hyper-
oxia (7.359 ± 0.395 km h−1) than normoxia (7.614 ±
0.438 km h−1) on the level gradient (Fig. 1e), and it
was also slower under hyperoxia (6.980 ± 0.547 km h−1)
than normoxia (7.446 ± 0.374 km h−1) on the uphill
gradient (Fig. 1f ).

Cardiorespiratory response
Cardiorespiratory results were presented in Fig. 2. In brief,
significantly higher oxygen saturation of peripheral artery
(SpO2; %) was observed under hyperoxia than normoxia at
any gait speeds on both gradients (Fig. 2a, b). VE was signifi-
cantly lower under hyperoxia than normoxia over 7.3 km h−1

on the level gradient and over 5.9 km h−1 on the uphill
gradient (Fig. 2c, d). PETCO2 was significantly higher under
hyperoxia than normoxia during walking at 7.3 km h−1 and
all running speeds on the uphill gradient (Fig. 2f). _VO2 was
significantly lower under hyperoxia over 5.2 km h−1 on the
level gradient (Fig. 2g) and over 4.5 km h−1 on the uphill
gradient (Fig. 2h). _VCO2 was significantly lower under
hyperoxia at several gait speeds (Fig. 2i, j). HR was
significantly lower under hyperoxia than normoxia on
both gradients mainly at faster gait speeds (Fig. 2k, l).

Muscle activity and MPF at the EOTS
TA activity became significantly lower when switching
from walking to running at the EOTS on the level gradi-
ent under normoxia and uphill gradient under both FiO2

conditions (Fig. 3a, b). GM activity was not significantly
different between walking and running on both gradients
(Fig. 3a, b). GL activity became significantly lower dur-
ing running than walking at the EOTS on both gradients
under hyperoxia (Fig. 3a, b), but not on the level gradi-
ent under hyperoxia. MPF of the GM and GL was not
significantly different between walking and running,
while MPF of the TA was lower during running than
walking on both gradients (Fig. 3c, d). TA, GM, and GL
activities under normoxia were significantly lower than
those under hyperoxia (Fig. 3a, b) except GL and TA ac-
tivities during running on the level gradient. MPF of the
TA was significantly higher under normoxia than hyper-
oxia during both gaits on both gradients (Fig. 3c, d),
although no significant difference was observed in the
GL and GM.
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Discussion
Economical speed
A higher SpO2 under hyperoxia than normoxia sug-
gested that our experimental setup successfully estab-
lished a hyperoxic condition (Fig. 2a, b). In support of
the former part of our first hypothesis as shown in
Additional file 1: Figure S1, the ES was significantly fas-
ter under hyperoxia than normoxia on the uphill gradi-
ent (Fig. 1b, d), but not on the level gradient (Fig. 1a, c).
An existence of the ES is one of the few biological advan-

tages of the erect bipedalism, because healthy walkers nat-
urally selected their ES as a preferred walking speed [4, 38].

Figueiredo et al. [39] suggested a significant contribution of
increased ventilatory responses for self-selected walking
speed, which could be close to the ES. In our present study,
hyperoxia was supposed to depress the peripheral chemo-
receptor activation (i.e., chemoreflex drive), which could
reduce ventilatory and HR responses as shown in
Fig. 2c, d, k, and l. It should be noted that hyperoxia
also reduces adenosine triphosphate (ATP) synthesis rate
and concomitant reduction in mitochondrial efficiency
during dynamic exercise at moderate intensity [40]. Thus,
there is a possibility that hyperoxia directly works with the
reduced metabolic demand during human locomotion.

Fig. 1 CoT-v relationships and comparisons of economical speed (ES) and energetically optimal transition speed (EOTS) on each gradient. a CoT-v
relationships on the level and b uphill gradient. c ES on the level and d uphill gradient. e EOTS on the level and f uphill gradient. “N” and “H”
represent normoxia and hyperoxia, respectively. +p < 0.05, *p < 0.01, and #p < 0.001 between normoxia and hyperoxia
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Fig. 2 Comparisons of cardiorespiratory parameters between normoxia and hyperoxia on each gradient. a SpO2 on the level and b uphill

gradient. c VE on the level and d uphill gradient. e PETCO2 on the level and f uphill gradient. g _VO2 on the level and h uphill gradient. i _VCO2 on
the level and j uphill gradient. k HR on the level and l uphill gradient, respectively. Open circles and squares represent walking under normoxia
and hyperoxia. Filled circles and squares represent running under normoxia and hyperoxia. To avoid overlapping plots at each speed, normoxic
and hyperoxic data were plotted 0.1 km h−1 slower or faster than the actual speeds. +p < 0.05, *p < 0.01, and #p < 0.001 between normoxia
and hyperoxia
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Since the CoT values were mainly determined by _VO2

as shown in Eq. 1 [29, 30], the lower CoT values during
walking under hyperoxia were mainly attributed to a re-
duced _VO2 rather than _VCO2 (Fig. 2i, j). These conse-
quences were particularly prominent at faster walking
speeds on the uphill gradient, because they explain the
rightward (faster) shift of the overall shape of the
U-shaped CoT-v curve under hyperoxia (Fig. 1b). As the
shape of the U-shaped CoT-v curve determined the ES as
shown in Additional file 1: Figure S1, its overall shape in

walking remained unchanged on the level gradient, result-
ing in an unchanged ES on that gradient (Fig. 1a, c).

Energetically optimal transition speed
Current anthropological literatures on the EOTS have
been focused whether the human beings change their
gait pattern only for a minimization of the whole-body
energy expenditure [6, 11, 13, 19–22]. To our surprise,
the EOTS was significantly slower under hyperoxia than
normoxia (Fig. 1e, f ), suggesting that the latter part of

Fig. 3 Comparisons of muscle activities and mean power frequency (MPF) at the energetically optimal transition speed (EOTS) on each gradient.
a Muscle activities on the level and b uphill gradient. c MPF on the level and d uphill gradient. “W” and “R” represent walking and running,
respectively. +p < 0.05, *p < 0.01, and #p < 0.001
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our first hypothesis was rejected. The results suggest that
running was more economical than walking under hyper-
oxia. In fact, around 10% lower CoT values were observed
during running under hyperoxia than normoxia (Fig. 1a, b;
ranged from 9.1 to 10.7% on the level gradient and from
12.2 to 13.2% on the uphill gradient, respectively). These
relatively lower CoT values during running caused a drastic
downward shift of the linear CoT-v relationship in
running, resulting in a significantly slower EOTS under
hyperoxia on both gradients (Fig. 1e, f).
A preferred gait transition occurred around 7–8 km h−1

on the level gradient under normoxia in adult males
[11, 12, 19–22]. Our recent study observed that the
EOTS was equivalent between moderate hypoxia (15%
FiO2) and normoxia on any gradients [18]. However, as far
as we know, there has currently been no comparable data
of the EOTS under hyperoxia. It should be noted that the
preferred gait transition speed was around 5–6% slower
than the EOTS [11, 19–21], suggesting that “energetically
optimal” may not be a necessary and sufficient condition
for the human gait transition.

Comparison of muscle activity between walking and
running
In support of our second hypothesis, TA activity signifi-
cantly decreased when the gait pattern was switched
from walking to running at the EOTS under normoxia
on both gradients (Fig. 3a, b), but not under hyperoxia
on the level gradient (Fig. 3a). These results, which were
observed under normoxia, were consistent with the
results of some previous studies [18, 23–25]. It is worth
noting that the MPF of the TA was lower during run-
ning than walking (Fig. 3c, d), suggesting that the motor
unit recruitment pattern of the TA shifted toward more
type I (slow twitch) fibers rather than type II (fast
twitch) fibers when switching the gait pattern from walk-
ing to running at the EOTS, because motor unit recruit-
ment patterns are reflected by MPF [35, 36].
Some considerations are necessary, because the TA

mainly activates during swing phase. Instead of the TA,
plantar flexors (GM and GL) play a substantial role in
forward acceleration during walking [27, 33, 41, 42] and
running [32]. Reduced plantar flexor activity during
the push-off phase resulted in a decrease in the CoT
[43, 44]. These previous findings indicated that plan-
tar flexor activity was mainly responsible for the CoT
during walking. Note that the GM, an antagonist of the
TA, has been proposed to play a key role in triggering the
gait transition, because the force production by the GM
decreased as a function of walking speed [31, 41]. As
shown in Fig. 3a, b, GM activity was not significantly
different between walking and running on either gradient
irrespective of FiO2 conditions. It was surprising to observe
that GL activity significantly decreased when the gait

pattern was switched from walking to running except on
the level gradient under hyperoxia (Fig. 3a, b), although re-
duced GL activity with unchanged GM activity could be
associated with a possible increase in the muscle contrac-
tion velocity [41]. Indeed, time duration of one gait cycle
was nearly 14% shorter during running than walking under
all conditions (Additional file 2: Table S1). In addition, the
MPF of both GM and GL was not significantly different
between walking and running at the EOTS (Fig. 3c, d).
These results demonstrated that the motor unit recruit-
ment patterns in these synergists remained unchanged,
being supported by the results of our recent study [18].
The GM and GL may share the necessary muscle acti-

vations without alterations of motor unit recruitment
pattern. Planter flexors are divided into three synergetic
muscles (GM, GL, and soleus), so that the total mass of
these synergists seems to be biologically redundant if
compared to other bipedal species [14, 15]. Such a
possible biological redundancy of these planter flexors
can contribute to avoid early onset of localized muscle
fatigue. In contrast, the TA should have a high endur-
ance capacity, as more than 70% of the TA consisted of
slow twitch fibers only in the humans [45, 46]. This
histochemical feature of the TA must be one of the evo-
lutionary adaptations caused by the erect bipedalism.
Once the TA recruited all type I (slow and endurance)
fibers, it is necessary to recruit type II (fast twitch) fi-
bers. Thus, TA activity and its motor unit recruitment
pattern are likely to be more influenced by gait patterns
compared to the plantar flexors. Such interpretations do
not conflict with a theory of Henneman’s size principle
[47]. Considering above, complicated lower leg muscle
activities and those motor unit recruitment patterns
observed in our study suggested that not only TA but
also GL may be related to the gait selection either walk-
ing or running around the EOTS.

Comparison of muscle activity between normoxia and
hyperoxia
Our present study observed that the muscle activities were
lower under hyperoxia than normoxia regardless of gait
patterns (Fig. 3a, b), suggesting that our second hypothesis
was partly rejected. Since EMG measured from lower leg
extremities during human locomotion is highly sensitive
to the gait speed [23], these reduced muscle activities
should be mainly attributed to 3.35% (level gradient;
Fig. 1e) and 6.26% (uphill gradient; Fig. 1f) slower EOTS
under hyperoxia. It is a noteworthy fact that muscular
activities at a given work rate tended to decrease under
hyperoxia due to a reduced ATP synthesis rate in the exer-
cising muscles [40]. Considering these facts, a slower
EOTS in association with lower muscle activities caused
by hyperoxia could be partly accounted for the lower
energy expenditure under hyperoxia than normoxia.
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It is more interesting to note that the MPF was still
higher under hyperoxia than normoxia only in the TA
(Fig. 3c, d), although the EOTS was slower under hyper-
oxia than normoxia on both gradients (Fig. 1e, f ). These
results demonstrated that more fast-twitch fibers were
recruited under hyperoxia than normoxia only in the
TA. Here, our primary question is why only TA is sensi-
tive to gait patterns and FiO2 conditions. First, the cen-
troidal line goes through the TA when standing [48].
Second, relative muscle weight of the TA is less than
20% of the plantar flexors in humans [49]. These ana-
tomical characteristics of the TA will be one aspect for
explaining greater sensitivity of the TA during human
locomotion.
Another aspect should be also considered. Very few

potential studies are partly related to our study [50, 51].
Amann et al. [50] measured EMG from three thigh mus-
cles during maximal cycle ergometer exercise under
100% FiO2 condition. Peltonen et al. [51] also measured
EMG from several leg muscles during maximal rowing
ergometer exercise under 62.2% FiO2 condition. It is ne-
cessary to take into account that the measured muscles,
exercise mode and/or intensity, FiO2 levels, and experi-
mental protocols in these previous studies [50, 51] were
different from the present study. Note that both previous
studies observed significantly higher MPF values in the
main working muscles under hyperoxia [50, 51], suggest-
ing that type II fibers are likely to be recruited under
hyperoxia. In fact, hyperoxia activates group IV muscle
afferents [52].
As mentioned before, the TA mainly activates in the

swing phase [23–26]; however, to the best of our know-
ledge, its motor unit recruitment characteristics during
human locomotion under different FiO2 conditions have
not been yet well investigated except for our recent
study [18]. Supplementary oxygen after muscle fatigue
was beneficial for sustained force production [28]. Mod-
erate hyperoxic gas inspiration can avoid or soften acute
mountain sickness while mountaineering [53]. Thera-
peutic hyperoxia has been reported to be available for
patients with chronic obstructive pulmonary disease
[54]. It is interesting to note that the cardiorespiratory
and/or muscular responses during exercise under hyper-
oxia exhibited large individual differences [28, 50, 54].
These results suggest that more investigations are neces-
sary for muscle activities and cardiorespiratory responses
during human locomotion under hyperoxia.

Limitations
Our treadmill cannot control gait speeds in a ramp man-
ner, so that a natural gait transition speed could not be
observed in this study. This limitation further resulted in
another limitation whether the EOTS corresponded to
the actual gait transition speed.

Conclusions
Hyperoxia decreased CoT values particularly at faster
walking speeds and any running speeds, being respon-
sible for the faster ES on the uphill gradient and slower
EOTS on both gradients. Reduced GL and TA activities
in association with a lower shift of the motor unit re-
cruitment pattern in the TA would be related to the gait
selection when walking or running at the EOTS.

Additional files

Additional file 1: Figure S1. Schematic illustration of cost of transport
(CoT) and gait speed (v) under normoxia and hyperoxia. Combination of
downward and rightward shifts of the U-shaped CoT-gait speed (v)
relationship under hyperoxia is presented. Arrows mean potential shifting
directions. (JPG 737 kb)

Additional file 2: Table S1. Summary of analyzed steps, its time
duration, step frequency, and gait cycle. Values are mean ± SD. Step
frequency was significantly higher during running than walking at any
conditions. (JPG 484 kb)
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