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Abstract

Malaria is one of the most devastating infectious diseases of humans. It is problematic clinically and economically
as it prevails in poorer countries and regions, strongly hindering socioeconomic development. The causative agents
of malaria are unicellular protozoan parasites belonging to the genus Plasmodium. These parasites infect not only
humans but also other vertebrates, from reptiles and birds to mammals. To date, over 200 species of Plasmodium
have been formally described, and each species infects a certain range of hosts. Plasmodium species that naturally
infect humans and cause malaria in large areas of the world are limited to five—P. falciparum, P. vivax, P. malariae,
P. ovale and P. knowlesi. The first four are specific for humans, while P. knowlesi is naturally maintained in macaque
monkeys and causes zoonotic malaria widely in South East Asia. Transmission of Plasmodium species between
vertebrate hosts depends on an insect vector, which is usually the mosquito. The vector is not just a carrier but the
definitive host, where sexual reproduction of Plasmodium species occurs, and the parasite’s development in the
insect is essential for transmission to the next vertebrate host. The range of insect species that can support the
critical development of Plasmodium depends on the individual parasite species, but all five Plasmodium species
causing malaria in humans are transmitted exclusively by anopheline mosquitoes. Plasmodium species have
remarkable genetic flexibility which lets them adapt to alterations in the environment, giving them the potential to
quickly develop resistance to therapeutics such as antimalarials and to change host specificity. In this article,
selected topics involving the Plasmodium species that cause malaria in humans are reviewed.
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Background: battle of humans against
malaria—past and present
Malaria has been recognised as a serious health problem
since the earliest historical times. This disease is caused
by protozoan parasites belonging to the genus Plasmo-
dium. The strong negative pressure of the disease has

likely forced the evolution of human populations in mal-
aria endemic regions and the selection of some unique
genetic variants. For example, thalassemia and sickle-cell
disease, each of which is a genetic disorder affecting red
blood cells, are commonly found in malaria endemic
areas [1], and people with these two disorders show re-
sistance to malaria. Another well-known example is the
Duffy-negative blood type that the majority of people liv-
ing in Central and West Africa have [2]. This confers
specific resistance to infection by one particular Plasmo-
dium species, P. vivax [3, 4]. The spread of this trait in
the population is estimated to have begun around 42,
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000 years ago [5], and today P. vivax malaria is rare in
these areas whereas P. falciparum malaria is prevalent
[6].
Even in the modern world with effective antimalarials

and insecticide-treated bed nets (ITNs), people in many
countries remain at risk, and the number of malaria
cases, particularly those resulting from P. falciparum
that causes the most serious infection, remains high in
economically poor countries, especially in Africa [7].
Rolling out adequate and continuous programmes to ef-
fectively control malaria has been difficult mainly due to
lack of finance. In 2000, the health programme to “com-
bat malaria” was selected as one of the critical global tar-
gets of the Millennium Development Goals set by the
United Nations. This global effort was to achieve the tar-
gets that were set for measurable health indicators, such
as disease prevalence, death rates and protection of chil-
dren under 5-years of age with ITNs and appropriate
antimalarial drugs. In 2005, the sum of global invest-
ments for malaria control was an estimated US$960 mil-
lion, mostly from National Malaria Control Programmes
(NMCPs) [7]. Whilst contributions from NMCPs
remained at the same level, investments from other
sources started to increase steadily since 2006. As a re-
sult, the sum of global investments surpassed US$2000
million in 2009 and has remained almost at this level
thereafter [7]. With this extra financing, malaria control
programs achieved a remarkable level of progress glo-
bally. For example, in 2000, the annual deaths caused by
malaria in the entire world and in Africa were estimated
to be 839,000 (between 653,000 and 1.1 million) and
694,000 (569,000–901,000), respectively. By 2015, these
numbers had been reduced to 483,000 (236,000–635,
000) and 292,000 (212,000–384,000) [7]. The number of
countries estimated to have fewer than 1000 indigenous
malaria cases increased from 13 in 2000 to 33 in 2015
[7], and six countries (United Arab Emirates, Morocco,
Armenia, Turkmenistan, Kyrgyzstan and Sri Lanka)
achieved at least 3 consecutive years of zero indigenous
cases between 2000 and 2015 and were certified as mal-
aria free by WHO [8].
Plasmodium species infecting humans share a similar

life cycle with an initial development phase in the liver
and subsequent further proliferation in the blood of the
host. They also show a similar susceptibility to some
antimalarial drugs such as quinine, chloroquine and ar-
temisinin, as well as the development of resistance to
these drugs [9, 10]. Transmission is also mediated by the
same group of anopheline mosquitoes [11]. P. vivax mal-
aria can relapse after chemotherapy with drugs that kill
the parasites only in the intraerythrocytic development
stage [12], but 8-aminoquinolines such as primaquine
are known to prevent this effectively [13]. Thus, system-
atic control programmes involving appropriate

chemotherapy including administration of primaquine to
patients with P. vivax malaria, as well as proper mos-
quito control, can simultaneously reduce the number of
malaria incidents caused by any Plasmodium species.
There have been reports of malaria in humans caused

by other Plasmodium species that naturally infect other
primate hosts. But zoonotic malaria is rare, except for
that caused by P. knowlesi, which naturally infects ma-
caque monkeys such as the long-tailed and the pig-tailed
macaques (Macaca fascicularis and M. nemestrina, re-
spectively). Human infection by P. knowlesi has been re-
ported since the 1960s [14, 15], but it had been long
thought exceptional like other zoonotic malarias.
The NMCP rolled out in Malaysia in the 1960s had

achieved a dramatic reduction of the number of human
malaria cases caused by P. falciparum and P. vivax in
Sarawak in Malaysian Borneo by the late 1990s–early
2000s. By contrast, the incidence of P. malariae which is
rather rare in that state [16] showed an apparent in-
crease [17]. At that time, the species of Plasmodium
present in patients in Sarawak was identified solely by
microscopical observation of parasites in blood films.
However, a molecular diagnosis combining nested PCR
and DNA sequencing revealed that most of the malaria
cases attributed to P. malariae by microscopy were actu-
ally caused by P. knowlesi [18]. Following the identifica-
tion of human cases of P. knowlesi in Sarawak, similar
cases were identified in neighbouring Sabah state [19]
and within the Peninsular Malaysia [20]. Human infec-
tions of P. knowlesi have also been reported in other
South East Asian countries including Vietnam and
Thailand [17], and P. knowlesi malaria is now recognised
as the fifth human malaria [21]. It has been confirmed
that P. knowlesi can produce gametocytes in patients
who naturally acquire the infection [22], although trans-
mission of P. knowlesi malaria between humans has not
been reported yet. The clinical importance of P. knowlesi
malaria is particularly high in Malaysia, where malaria
caused by the other four human-infective species has
been almost completely eliminated thanks to the suc-
cessful NMCP [6]. Now, almost all malaria cases identi-
fied in the country are caused by P. knowlesi.
Like P. knowlesi, other Plasmodium species that natur-

ally infect non-human primates have been considered as
potential threats to human health through zoonosis [23,
24]. Macaques in Sarawak in Malaysian Borneo are
known to be the reservoir of six Plasmodium species—P.
knowlesi, P. inui, P. cynomolgi, P. coatneyi, P. fieldi and
P. simiovale [25]. Of these, P. cynomolgi has been proven
to naturally cause human infection [26], and P. inui can
establish an infection when experimentally introduced
into humans [27]. Clinical cases of zoonotic malaria
caused by these species are currently either extremely
rare (P. cynomolgi) or unreported (P. inui), but they
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might become the next Plasmodium species to signifi-
cantly affect human health in the future.
Zoonotic malaria has been reported in South America

as well. The species of Plasmodium implicated there are
P. simium [28] and P. brasilianum [29], parasites that
naturally infect platyrrhine monkeys. The two species, P.
simium and P. brasilianum, have been shown to be
phylogenetically very close to P. vivax and P. malariae,
respectively [30].

Malaria and Plasmodium biology
Life cycle of Plasmodium
All Plasmodium species share a similar life cycle [31]. It
has two parts—in the first, the parasite infects a person
(or a vertebrate host), and in the second, it is transmit-
ted from the malaria patient (or infected vertebrate host)
to another host by an insect vector. The vectors that
transmit the five Plasmodium species naturally infecting
humans are mosquitoes of the genus Anopheles. These
mosquitoes also transmit other Plasmodium species
parasitising other mammals whereas transmission of
Plasmodium infecting birds and reptiles depends on
mosquitoes of other genera or other blood-sucking in-
sects [32].
The Plasmodium life cycle begins when parasites

known as sporozoites produced in the insect vector
enter the blood of the vertebrate host following a bite
[33]. Sporozoites deposited in the dermis [34] rapidly
migrate to the liver and invade hepatocytes where they
multiply by thousands—a process known as schizogony
[35]. The resulting parasites, now called merozoites, are

released back into the blood [36] and infect erythrocytes.
In an erythrocyte, one merozoite multiplies asexually by
schizogony to generate between 8 and 64 new merozo-
ites (the number depending on the species) [37]. These
new merozoites are released back to the blood, and the
parasites repeat this intraerythrocytic propagation cycle
every 24 (P. knowlesi), 48 (P. falciparum, P. ovale, P.
vivax) or 72 (P. malariae) hours. Some merozoites then
differentiate into the next developmental stage called the
gametocyte for sexual reproduction [38, 39]. Just when
gametocyte differentiation (gametocytogenesis) starts de-
pends on the species. For example, P. falciparum needs
to complete several cycles of intraerythrocytic propaga-
tion before it starts differentiation into gametocytes,
whereas P. vivax continuously produces gametocytes
even in its early intraerythrocytic propagation cycles
(Table 1). While each gametocyte has a similar appear-
ance during its early development, they are already pro-
grammed to differentiate into either male or female
gametes (gametogenesis, sexually committed). This com-
pletes the part of the parasites’ life cycle that occurs in-
side the human body. Development beyond the
gametocyte stage normally takes place following a blood
meal, in the lumen of the mosquito midgut, where the
male and the female gametes fuse [52]. However, there
are sporadic reports of exflagellated forms (male gam-
etes) of P. falciparum observed in the human body [53].
The second part of the life cycle in the insect vector

begins when the insect ingests the blood containing ga-
metocytes from an infected vertebrate host. The gameto-
cytes are activated once exposed to the specific

Table 1 Onset of gametocyte production and recurrence in human malaria

Causative
species

Onset of gametocyte production Recurrence

Relapse Recrudescence

P.
falciparum

After several rounds of intraerythrocytic asexual
reproduction (“gametocytes may make their
appearance in small numbers on or about the 10th
day following the first day of fever, and their
numbers increase rapidly day by day for 2 or 3
weeks” [40])

Unknown (hypnozoites not observed yet) Known to occur (latent
period usually < 2 months,
but can be > 2 years [41])

P. vivax Continuous from early rounds of intraerythrocytic
asexual reproduction (“sexual forms may occur as
early as the 6th or 7th day, reaching their maximum
number on or about the 10th day” [40])

Well documented (latency period ranges from < 2
weeks to > 1 year and varies systematically by
geographic region [42]; hypnozoites in liver
observed [43]; estimated to be majority of
recurrence [44])

Unknown

P. malariae Probably continuous from early rounds of
intraerythrocytic asexual reproduction (after a
prepatent period (16–59 days [45]), gametocytes
emerges in patient’s blood together with
intraerythrocytic parasites [46])

Unknown (hypnozoites not observed yet) Known to occur (latent
period can be > 40 years
[47])

P. ovale Continuous from early rounds of intraerythrocytic
asexual reproduction (“[gametocytes] appear in the
peripheral blood a little earlier than in B.T. [benign
tertian]” [40])

Clinical cases reported [48]; molecular evidence for
a causal relationship between dormant liver stages
and subsequent relapses unavailable [49];
hypnozoites not observed yet [50]

Unknown

P. knowlesi Unknown (gametocytes identified in some of the
naturally infected malaria patients [22])

Unknown (hypnozoites not observe [51]) Unknown
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environment of the mosquito midgut lumen, and the
male and the female gametocytes differentiate to pro-
duce microgametes and macrogametes, respectively [52].
The microgamete fertilises the macrogamete to produce
a zygote, the only developmental stage of the parasite
that has a diploid genome [54]. Genetic crossing experi-
ments with gametocytes of two clones of P. falciparum
with different allelic variants demonstrated that recom-
bination can occur in zygotes [55, 56]. Soon the zygote
undergoes meiosis and differentiates into a motile form,
the ookinete, that now contains four haploid genomes in
its nucleus [54]. The ookinete penetrates the wall of the
mosquito midgut and forms an oocyst on the outer side
[57]. In the oocyst, several rounds of mitosis take place,
and numerous sporozoites are produced by sporogony
[58, 59]. When the oocyst matures, it ruptures, and spo-
rozoites released into the haemolymph migrate to the
salivary glands, where they acquire the ability to infect
human cells [60] when released into the body of a verte-
brate host during a blood meal. Human-infecting Plas-
modium species complete this second part of the life
cycle (gametocytes to sporozoites ready to infect the
next person) in around 10–18 days.
Besides the nucleus, the Plasmodium cell has two dis-

tinct organelles that contain their own genomic DNA,
the mitochondrion and the apicoplast (see below). It has
been shown that each oocyst of P. falciparum developing
in the mosquito inherits the mitochondrial genomic
DNA uniparentally from the female gamete [61]. A fur-
ther study reported that both organellar genomic DNAs
were detected in female gametes of P. gallinaceum (a
species infecting chickens) but not in male gametes [62].
This suggests that Plasmodium inherits both the mito-
chondrion and the apicoplast only through the female
gamete (macrogamete).

Recurrence of malaria and the hypnozoite
Malaria can recur after the parasites apparently have
been cleared from the patient’s blood. Recurrence is due
either to a recrudescence or a relapse (Table 1). Recru-
descence originates from a minor population of parasites
that survived undetected in the patient’s blood, whereas
relapse is caused by cryptic, dormant cells called hypno-
zoites [43] that persist in the patient’s liver. Hypnozoites
originate exclusively by differentiation from sporozoites
and never from another form of the parasite, such as the
merozoites circulating in the patient’s blood [63].
P. vivax is known to produce hypnozoites that cause

relapses after the parasites have been cleared from the
patient’s blood by treatment with antimalarial drugs
such as chloroquine or quinine [12]. There is one report
that, in the majority of relapse cases studied, the geno-
type of the parasites in the first relapse is different from
those during the preceding acute episode [64]. This

result was probably due to the following: (1) P. vivax
sporozoites of two or more different genotypes infecting
a person, (2) sporozoites other than the one that caused
the acute episode differentiating into a hypnozoite in the
liver, and (3) only one of those hypnozoites causing the
relapse event. External stimuli such as other infections,
including P. falciparum malaria, have been suggested to
activate the hypnozoite and initiate a relapse of P. vivax
malaria [65], although the mechanism has not been
explained.
Of the other human malaria parasites, P. ovale has

long been believed to develop hypnozoites because there
are reports of recurrence without a second infection by
the same species. However, this view has been ques-
tioned recently because of a lack of experimental and
clinical data unequivocally supporting the presence of
hypnozoites in the liver [49, 50].
Neither P. falciparum nor P. malariae is thought to

develop hypnozoites, and such cells have never been
identified in either species [63]. Nevertheless, these two
species can cause persistent infection without the devel-
opment of any symptoms over long periods of time. For
example, there is a case report of a P. falciparum infec-
tion that persisted asymptomatically in the human body
for 13 years [66]. A P. malariae case that most likely
developed after an asymptomatic infection lasted over 40
years has also been reported [47]. Plasmodium parasites
can be maintained in the human blood over long periods
of time at a very low number when their growth rate
and the host’s immunity are able to maintain a subtle
balance. Recurrence (recrudescence) is believed to begin
when the balance is broken.
Whilst there is strong evidence that hypnozoites cause

relapses in P. vivax malaria, some recurrences of P. vivax
malaria might have originated from non-hypnozoite
cells, as in other human malarias [67–69]. Recently, it
was reported that recurrence of parasitaemia had been
recorded in some neurosyphilis patients who had re-
ceived a P. vivax malaria patient’s blood for malariother-
apy [70–72]. Because P. vivax does not persist as
sporozoites in human blood, no hypnozoite could have
developed in the recipients. Thus, these records may
suggest that P. vivax malaria can recur independent of
hypnozoites.

Gametocytes
Throughout development in their vertebrate hosts, Plas-
modium cells have a haploid genome. Nevertheless, a
cloned line of Plasmodium originating from a single cell
generates both male and female gametocytes in the ver-
tebrate host. This indicates that the sex of Plasmodium
gametocytes is not determined chromosomally but epi-
genetically, and evidence explaining the mechanism is
being accumulated [38]. The gametocyte sex ratio is
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apparently affected by environmental factors [73–75],
and this may optimise parasite transmission.
Gametocytes of the Plasmodium species that infect

humans are known to be susceptible to 8-
aminoquinolines such as primaquine, but not to other
antimalarials such as artemisinin and chloroquine that
kill the parasites in asexual intraerythrocytic develop-
ment [76]. Thus, even after parasites in their asexual
intraerythrocytic development cycle are removed by
treatment with those antimalarials, transfer of gameto-
cytes in the blood can cause malaria in other people. In
addition, it has been reported that P. falciparum game-
tocytes can persist for several weeks after the clearance
of asexual blood stage parasites by drug treatment such
as artemisinin-combination therapy [77]. An in vitro
study using culture of gametocytes from one clinical iso-
late and two laboratory strains of P. falciparum observed
that gametocytes had a 50% survival rate of 2.6–6.5 days
and that surviving cells were detectable until almost 2
months after the start of the experiment [78]. Both the
rate of clearance of gametocytes from the patient’s body
and the rate of decline of gametocyte infectivity for mos-
quitoes depend on multiple factors such as the kind of
treatment and the way it is implemented [79, 80], as well
as host immunity [81]. People with asymptomatic infec-
tion can carry a high number of gametocytes in their
blood, just like patients with symptoms of malaria [82–
84]. Therefore, gametocytocidal treatment should be
given not only to malaria patients with symptoms but
also to asymptomatic Plasmodium carriers to prevent
the parasites in them causing new malaria cases.

Asymptomatic carriers
In areas endemic for malaria, many people carry Plasmo-
dium without developing symptoms because of acquired
immunity [85, 86]. Often, the presence of parasites in
those carriers cannot be detected either by microscopy
or rapid detection tests (RDTs), the two standard tests
for detecting Plasmodium in malaria patients’ blood.
However, infection can be detected with more sensitive
methods, e.g., molecular detection by PCR and LAMP
[87], or ultrasensitive variations of RDTs [88]. Asymp-
tomatic carriers can supply infectious gametocytes to
mosquitoes, though their impact on malaria in the com-
munity where they live may be low or negligible when
the number of gametocytes in the blood is not high [89].
Asymptomatic Plasmodium carriers can develop an epi-
sode of malaria when their immunity against the parasite
is compromised, for example, when they move to a
malaria-free area where they no longer have new Plas-
modium infections that sustain immunity against the
parasite. As a result, asymptomatic carriers may cause
imported malaria [90, 91]. Even without developing any

episodes of malaria, they can also cause transfusion mal-
aria [92] or organ-transplantation malaria [93].
The importance of controlling asymptomatic carriers

of malaria parasites in the modern world is higher than
ever. It is mainly because people’s movements have be-
come much easier than in earlier times, thanks to eco-
nomic development and transportation. In addition, the
number of refugees from regional conflicts, many of
which occur in malaria endemic areas, has increased.
Asymptomatic carriers within migrants from malaria en-
demic areas ought to be identified and adequately cared
for, like patients with apparent malaria symptoms, in
order to prevent the spread or re-introduction of malaria
into malaria-free areas [94, 95].

Apicoplast and plant-like metabolism
The genus Plasmodium belongs to a larger group of pro-
tozoans called the Apicomplexa, part of the superphy-
lum Alveolata that also includes dinoflagellates and
ciliates [96]. Like Plasmodium, almost all apicomplexans
are obligate parasites [31], and many of them, including
all Plasmodium species, have a vestigial, non-
photosynthetic plastid called the apicoplast in the cell
[97–99]. The apicoplast is a secondary plastid sur-
rounded by four layers of membrane [100, 101] and has
a tiny genome, the smallest in size of all known plastid
genomes [102, 103]. Recently, exceptional apicomplexan
species that have a photosynthetic plastid were also dis-
covered [104, 105]. These new species, grouped as chro-
merids, can grow phototrophically without parasitising
other organisms. The plastids of chromerids contain
chlorophyll a but lack chlorophyll c that is universally
found in the plastids of other phototrophic alveolates.
Like the apicoplast, the photosynthetic plastids of chro-
merids are secondary plastids [106]. Features of the
organellar genome suggest that all apicomplexan plastids
originated from the last common ancestor of present
apicomplexans [107].
Unlike plastids of photosynthetic organisms, the apico-

plast is non-photosynthetic, and almost all gene prod-
ucts encoded in the tiny organellar genome are
predicted to be involved in either transcription or trans-
lation [108]. Therefore, the reason why parasitic apicom-
plexans such as Plasmodium carry a non-photosynthetic
plastid was not clear when the organelle’s presence in
the parasite was first recognised [109]. However, as the
genomic information encoded in the nuclear genome of
the parasites became available [110], it gradually became
evident that the Plasmodium apicoplast is involved in
plant-type metabolic pathways including isoprenoid bio-
synthesis [111], type II fatty acid biosynthesis [112] and
haem biosynthesis [113]. These plant-type pathways in-
volving the apicoplast have been suggested to be import-
ant for Plasmodium to complete its development,
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especially in mosquitoes [114, 115] and in the liver [116,
117]. However, it has been shown that Plasmodium in
the intraerythrocytic cycle can keep growing in in vitro
culture as long as a sufficient amount of isopentenyl
pyrophosphate (IPP) is supplied in the culture medium,
even when they have lost the apicoplast [118]. This sug-
gests that the requirement of the apicoplast for this stage
of the parasites is solely to obtain IPP. IPP is the precur-
sor of various isoprenoids and is essential for eukaryotes
including Plasmodium to survive, and the plant-type
methylerythritol phosphate (MEP) pathway in the apico-
plast is the only source of this critical molecule in the
parasite [119]. One of the enzymes involved in the MEP
pathway, 1-deoxy-D-xylulose-5-phosphate reductoi-
somerase, is inhibited by a specific inhibitor called fos-
midomycin [120], and growth of P. falciparum is
inhibited by fosmidomycin both in vitro and in vivo
[121, 122]. By contrast, fosmidomycin does not show a
significant inhibitory effect on the growth of another dis-
tantly related apicomplexan Toxoplasma gondii, which
also is supposed to depend on IPP supplied by the MEP
pathway in the apicoplast [123]. The molecular basis of
the resistance of T. gondii to fosmidomycin has been
studied, and it was suggested that poor drug uptake
through the parasite’s plasma membrane is the cause
[124]. Another study suggested that the uptake of fosmi-
domycin into the erythrocyte which P. falciparum infects
depends on a new permeability pathway induced by the
parasite [125]. Although fosmidomycin has good proper-
ties as a novel antimalarial [126], Plasmodium may be
able to develop resistance to the drug by mutation in un-
expected genes.
Some apicomplexans such as Cryptosporidium and

Gregarina do not have the apicoplast [127], while P. fal-
ciparum and T. gondii cannot survive if they lose the or-
ganelle [118, 128]. The enzymes involved in the plant-
like metabolism in the apicoplast are encoded in the nu-
clear genome, and apicomplexan species that do not
have the apicoplast tend to lack all the genes specifying
these enzymes [129]. By contrast, the genome of Crypto-
sporidium species encodes a remarkably large number of
putative amino acid transporters compared to apicom-
plexans with an apicoplast [130]. These species without
an apicoplast probably acquire the metabolites that or-
dinary apicomplexans synthesise in the apicoplast, from
the host using some of those additional transporters.

Antimalarial drugs and resistance
From ancient times, various plant products have been
used in folk medicine to treat malaria. In the seven-
teenth century, it was shown that the bark of South
American quina-quina trees (Cinchona spp.) contains an
agent with antimalarial activity. This substance, quinine,
has been used in the treatment of malaria since then

[131]. In the nineteenth century, efforts began to chem-
ically synthesise pure compounds with antimalarial ac-
tivity, and some clinically useful synthetic antimalarials
such as chloroquine became available in the 1930s. In
1972, another natural compound used traditionally in
China, artemisinin, was reported to have antimalarial
effect.
Antimalarial drugs currently used in the clinical treat-

ment of human malaria come in five classes based on
their structural backbone and apparent action [132].
Those classes are (1) endoperoxides (e.g. artemisinin and
its derivatives), (2) 4-aminoquinolines (chloroquine),
aryl-amino alcohols (quinine, mefloquine), (3) antifolates
(pyrimethamine, proguanil, sulfadoxine), (4) naphthoqui-
nones (atovaquone) and (5) 8-aminoquinolines (prima-
quine, tafenoquine). The main targets of inhibition by 4-
aminoquinolines, anitifolates and naphthoquinones have
been shown to be detoxification of haem released from
digested haemoglobin, pyrimidine biosynthesis and
mitochondrial cytochrome b involved in oxidoreduction,
respectively. Aryl amino alcohol class inhibitors seem to
inhibit the same metabolism as 4-aminoquinolines,
whereas endoperoxides, such as artemisinin, act on mul-
tiple cellular processes involving reactive oxygen species
in Plasmodium cells.
The parasites causing human malaria, especially P. fal-

ciparum, have acquired resistance to each of these anti-
malarials one by one, and today, drug-resistant parasites
are prevalent in malaria endemic areas [133]. It has been
well documented that point mutations causing amino
acid substitutions in the active site of dihydrofolate re-
ductase (the target enzyme of pyrimethamine and pro-
guanil) make P. falciparum highly resistant to those
antifolate drugs [134, 135]. Another example includes
specific point mutations occurring in pfcrt and pfmdr1,
which specify transporters CRT and MDR1, respectively,
which promote the efflux of antimalarials such as 4-
aminoquinolines and aryl amino alcohols from the di-
gestive vacuoles of P. falciparum [136]. As a result, para-
sites with these mutated genes become resistant to
antimalarials that block haem detoxification in the di-
gestive vacuoles. Point mutations in a gene are not the
only the way for the parasites to acquire resistance to
antimalarials. For example, when expression of the af-
fected gene product is elevated because of gene amplifi-
cation or a change in regulatory mechanisms,
antimalarials can reduce or lose their efficacy [137, 138].
It is also potentially possible that Plasmodium species
acquire new machinery with which the parasites can sur-
vive without the metabolism targeted by an antimalarial.
For example, if Plasmodium acquires a new transporter
with which they can acquire IPP from the host, as
Cryptosporidium species can, the parasites become re-
sistant to fosmidomycin.
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It has been reported that clinical isolates of P. falcip-
arum showing resistance to multiple antimalarial drugs
tend to have defects in DNA mismatch repair [139, 140].
Genetic changes are often harmful, so having defects in
DNA mismatch repair, which causes a higher rate of
genetic changes in the genome, can reduce the fitness of
the parasites affected. However, parasites with such de-
fects have a potential to generate a wider variety of gen-
etic changes compared to those without such defects.
This is presumably beneficial for the parasites in order
to survive under strong drug pressure. The A + T con-
tent of the genome of Plasmodium species is generally
high (> 60%); it is especially high in the genome of P. fal-
ciparum—nearly 80% in coding regions and approaching
90% in non-coding regions. The genome of P. falcip-
arum has been shown to be prone to small genetic
changes such as indel mutations [141]. The high A + T
content of the genome may also contribute to Plasmo-
dium developing drug resistance.

Host specificity
The natural host range of Plasmodium depends on the
species. It can be extremely narrow as in P. falciparum,
which infects humans but not African apes that are
phylogenetically very close to humans [142]. The range
can also be very wide as in P. relictum, which is known
to infect more than 100 different species of birds around
the world, classified into different families and orders
[143]. Traditionally, Plasmodium species are sub-
categorised into distinct subgenera based on their
morphology and ranges of vertebrate hosts and vectors
[32]. It has been pointed out that the genus Plasmodium
as a whole is polyphyletic and that the taxonomy of the
order Haemosporidia, which consists of Plasmodium
and other related genera, has many conflicts [144].
Nevertheless, each subgenus of Plasmodium seems to be
monophyletic. Plasmodium species that infect mammals
generally belong to either one of three subgenera, Laver-
ania, Plasmodium or Vinckeia, apart from some species
recently identified from ungulate hosts [32, 144, 145].
The subgenera Laverania, Plasmodium and Vinckeia
consist of parasite species that infect apes, monkeys and
rodents, respectively.
Unlike Plasmodium species that infect birds, which are

transmitted by a wide variety of mosquitoes including
Culex and Aedes, mammalian malaria parasites belong-
ing to subgenera Laverania, Plasmodium and Vinckeia
are transmitted only by anopheline mosquitoes [32].
This is because mammalian Plasmodium species can
complete their development from gametocytes to infec-
tious sporozoites only in anopheline mosquitoes. How-
ever, this does not mean that these parasites cannot
developmentally differentiate from gametocytes in non-
anopheline mosquitoes [146]. There was an early report

that oocysts formed on the midgut epithelium, and spo-
rozoites were observed in the salivary gland when Culex
bitaeniorhynchus was fed with human blood containing
gametocytes of P. falciparum or other human malaria
parasites [147]. However, another recent study reported
that a laboratory strain of P. falciparum fed to C. quin-
quefasciatus developed ookinetes that soon lysed and
never formed oocysts [148]. This suggests that P. falcip-
arum is killed by the mosquito’s immune system when
the ookinetes are exposed to the haemolymph of non-
anopheline mosquitoes [149].
It is not true that all anopheline mosquitoes are

equally important in transmitting Plasmodium between
humans or animals; different Anopheles species have dif-
ferent habitats, feeding behaviour and preference for the
animal species from which they suck blood [150]. These
differences may promote species differentiation in the
parasites they carry and provide a chance for the parasite
to switch its host [151].
Of the four human Plasmodium species, P. falciparum

belongs to subgenus Laverania, whereas all the others
belong to subgenus Plasmodium. P. knowlesi that causes
zoonotic malaria in humans also belongs to the sub-
genus Plasmodium. Generally, P. falciparum only infects
humans in natural conditions [152], though it is possible
to adapt the species to infect chimpanzees in the labora-
tory [153]. Krief et al. reported that they isolated P. fal-
ciparum from bonobos (Pan paniscus) kept at the Lola
ya Bonobo Sanctuary in the Democratic Republic of the
Congo, though the mitochondrial haplotype map they
drew indicated that the isolates from bonobos were gen-
etically distant from P. falciparum parasites infecting
humans [154]. The non-P. falciparum Laverania species
that is phylogenetically closest to P. falciparum is P.
praefalciparum, which infects gorillas but not humans
or chimpanzees [152]. As with these two species, all
Plasmodium species of subgenus Laverania so far de-
scribed show a strong host specificity in their natural
transmission [152, 155]. A longitudinal survey of anoph-
eline mosquitoes carried out in two wildlife reserves in
Gabon where different Laverania species coexist re-
vealed that the three sylvan Anopheles species collected
in the survey, An. vinckei, An. moucheti and An. mar-
shallii, carried multiple Laverania species whose verte-
brate host specificity varied [151]. This indicates that the
strong host specificity of the Laverania species is not
solely caused by specific association between anopheline
vectors and vertebrate hosts. A recent comparative gen-
omics study between Laverania species revealed that
these parasites have striking copy number differences
and structural variations in multiple gene families in
their genomes [156]. Variations in the stevor family,
which has been shown to be involved in host-parasite in-
teractions in P. falciparum [157], showed a host-specific
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sequence pattern. Probably these variations are critically
important for each Laverania species to determine their
strong host specificity. Rh5, a member of another gene
family, has been shown to be important for Plasmodium
species of subgenus Laverania to bind to erythrocytes of
specific hosts [158]. EBA165, a member of the erythro-
cyte binding-like (EBL) gene family, is pseudogenised in
the genome of P. falciparum but not in other Laverania
species’ genomes. A recent study showed that P. falcip-
arum becomes capable of binding to ape erythrocytes
but loses the ability to bind human erythrocytes when a
functional EBA165 product is expressed [159]. This sug-
gests that losing the functional EBA165 product was a
key step in the emergence of the human-infecting P. fal-
ciparum from its P. praefalciparum-like ancestor that
probably did not infect humans.
In the mosquito survey in Gabon described above, it

was also found that the three sylvan species of Anoph-
eles carried Plasmodium species which were extremely
close to P. vivax or P. malariae [151]. In a phylogenetic
analysis, these P. vivax-like isolates from mosquitoes col-
lected in the survey in Gabon made a cluster with P.
simium, one of the two South American zoonotic Plas-
modium species [151]. Another study suggested that P.
brasilianum, the other South American zoonotic Plas-
modium, is probably an amphixenotic variant of P.
malariae that acquired infectivity to the simian hosts
while also keeping its original human infectivity [29]. All
these suggest that both P. vivax and P. malariae can
switch their host more easily than the species of sub-
genus Laverania [151]. However, the mechanisms be-
hind host switching of species of subgenus Plasmodium
including P. knowlesi and other simian species causing
zoonotic malaria are not well understood.

Conclusions
Humans have long suffered from malaria, the disease
caused by Plasmodium. Thanks to the discovery of nat-
ural and chemically synthesised antimalarials, malaria
has become a disease curable by chemotherapy. To-
gether with mosquito vector control using insecticides,
treatment of malaria patients with synthetic antimalarials
such as chloroquine and artemisinin has dramatically re-
duced the burden of malaria in the modern world com-
pared to the past. Nevertheless, malaria is still prevalent,
killing hundreds of thousands of people globally every
year.
One of the problems that hinder control of malaria is

the emergence and spread of chemotherapy-resistant
parasites [160–162]. To solve this problem, novel anti-
malarial substances whose targets are different from
those of existing antimalarials are sought. Using those
inhibitors in combination with existing antimalarials
largely reduces the risk that the parasites acquire

resistance to each substance. For example, inhibitors of
the plant-like metabolic pathways of the parasite are
attracting attention.
Another problem is that Plasmodium can be easily

carried from endemic areas to non-endemic areas in the
modern world because of increased movement of people.
Malaria-free countries and areas are steadily increasing,
but imported malaria is a commonly shared threat
against health in many countries and areas. Plasmodium
species can be retained in the human body for a long
time without causing any overt symptoms. Asymptom-
atic Plasmodium carriers can start developing malaria
spontaneously and spread imported malaria in malaria
non-endemic countries and areas. These people may also
spread the parasite when they are involved in blood
transfusions and organ transplantation as donors.
P. falciparum and other human-infecting Plasmodium

species share a characteristic that lets them infect
humans, which is the outcome of convergent evolution.
Currently, Plasmodium species that naturally cause mal-
aria in humans are limited, but other species may also
acquire natural infectivity to humans and start causing
new zoonotic malaria at any time. The physical distance
between humans and non-human animals such as other
primates can depend on the degree of local develop-
ment, and this could affect the chance of non-human
Plasmodium species becoming the cause of zoonotic
malaria in humans.
Plasmodium species may change their insect hosts as

well. Unlike the Plasmodium species that infect mam-
mals, avian malaria parasites develop and produce infec-
tious sporozoites in non-anopheline mosquitoes. This
implies that mammalian Plasmodium species also could
acquire resistance to the immune system of non-
anopheline mosquitoes such as Culex and Aedes and use
them as transmission vectors. Some non-anopheline
mosquito species can breed even in harsh environments
such as in tunnels, on the coast or in urbanised areas,
and can be cosmopolitan [163, 164]. If a Plasmodium
species that can cause malaria in humans acquired the
capability of completing its mosquito stage development
in non-anopheline mosquitoes, its impact on human so-
ciety could be substantial.
The relationship between humans and Plasmodium

changes dynamically due to both the parasites’ nature
and the activities of humans. Understanding the basic
biology of the parasites that leads to these changes, and
applying the knowledge to malaria control, should help
to achieve a healthier global society.
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