
Biswas et al. 
Journal of Physiological Anthropology            (2024) 43:7  
https://doi.org/10.1186/s40101-024-00354-7

REVIEW Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom‑
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of
Physiological Anthropology

The influence of the environment 
and lifestyle on myopia
Sayantan Biswas1†, Antonio El Kareh2†, Mariyem Qureshi1, Deborah Mei Xuan Lee3, Chen‑Hsin Sun4, 
Janice S.H. Lam4, Seang‑Mei Saw5,6,7 and Raymond P. Najjar4,5,6,8*   

Abstract 

Background Myopia, commonly known as near‑sightedness, has emerged as a global epidemic, impacting almost 
one in three individuals across the world. The increasing prevalence of myopia during early childhood has heightened 
the risk of developing high myopia and related sight‑threatening eye conditions in adulthood. This surge in myopia 
rates, occurring within a relatively stable genetic framework, underscores the profound influence of environmental 
and lifestyle factors on this condition. In this comprehensive narrative review, we shed light on both established 
and potential environmental and lifestyle contributors that affect the development and progression of myopia.

Main body Epidemiological and interventional research has consistently revealed a compelling connection 
between increased outdoor time and a decreased risk of myopia in children. This protective effect may primarily 
be attributed to exposure to the characteristics of natural light (i.e., sunlight) and the release of retinal dopamine. 
Conversely, irrespective of outdoor time, excessive engagement in near work can further worsen the onset of myopia. 
While the exact mechanisms behind this exacerbation are not fully comprehended, it appears to involve shifts in rela‑
tive peripheral refraction, the overstimulation of accommodation, or a complex interplay of these factors, leading 
to issues like retinal image defocus, blur, and chromatic aberration. Other potential factors like the spatial frequency 
of the visual environment, circadian rhythm, sleep, nutrition, smoking, socio‑economic status, and education have 
debatable independent influences on myopia development.

Conclusion The environment exerts a significant influence on the development and progression of myopia. 
Improving the modifiable key environmental predictors like time spent outdoors and engagement in near work can 
prevent or slow the progression of myopia. The intricate connections between lifestyle and environmental factors 
often obscure research findings, making it challenging to disentangle their individual effects. This complexity under‑
scores the necessity for prospective studies that employ objective assessments, such as quantifying light exposure 
and near work, among others. These studies are crucial for gaining a more comprehensive understanding of how vari‑
ous environmental factors can be modified to prevent or slow the progression of myopia.
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What is myopia?
Myopia or near-sightedness is a refractive error that is pre-
dominantly caused by a mismatch between the optical 
power of ocular components (i.e., the cornea and the crys-
talline lens) and the axial length (AL) of the eye whereby 
light entering the eye is focused anterior to (in front of) the 
retina, leading to the blurred vision of distant images [1, 
2]. In axial myopia, an excessive antero-posterior elonga-
tion of the eyeball occurs with thinning of the retina, cho-
roid, and sclera [1] (Fig. 1). This excessive axial elongation is 
hypothesized to trigger sub-foveal chorio-retinal stretching, 
increasing the risk of sight-threatening ocular diseases such 
as posterior staphyloma, retinal degeneration, and glaucoma 
[3]. On the other hand, refractive myopia is predominantly 
associated with steepening of the cornea and lens curvature 
which increases the optical power of the eye [1].

Blurred distance vision due to myopia can be cor-
rected using negative (concave) spectacles or contact 
lenses that refocus the image on the retina [4]. The 
power of the corrective lens in diopters (D) reflects the 
degree/severity of myopia [5]. For an eye to be consid-
ered myopic, the spherical equivalent refractive error 
(spherical refraction + 0.5 * cylindrical refraction) with 
ocular accommodation relaxed must be ≤ −0.50 D. In 
high myopia, the spherical equivalent refractive error 
when ocular accommodation is relaxed is ≤ −5.00 D [6].

Myopia is a public health concern
The prevalence of myopia is not homogeneous across 
the globe. In school children (6–19 years old), the 
highest myopia prevalence was reported in Asia (60%; 

including East Asia (73%)), followed by  North Amer-
ica (42%), Europe (40%), South America (~10%), and 
Africa (3.4–4.0%) [7]. In young adults, the prevalence 
is much higher in urban East Asian countries (81.6–
96.5%) than in the rest of the world (12.8–35.0%) [8]. 
In comparison, the prevalence of adult myopia was 
19.4–41.8% among East Asians, 17.2–36.5% in the 
rest of Asian countries, and 11.4–35.1% among non-
Asians [8]. The worldwide prevalence of myopia is 
on the rise for reasons that are still not well under-
stood [7, 9–11]. A systematic review and meta-anal-
ysis of 145 studies worldwide on myopia prevalence 
predicted that  by 2050,  half of the world population 
(4,758 million people) will be myopic and ~10% of the 
world population (938 million people) will have high 
myopia. [12]. In Europe, however, findings are mixed, 
with both reports of an increase [13] and no change in 
myopia prevalence [14].

In addition to being a public health concern, myo-
pia is also a health economic burden. There are sev-
eral estimates for the global financial burden related 
to myopia (i.e., the health expenditure and loss of pro-
ductivity), all of which are in the range of several hun-
dred billion dollars per year [9]. High myopia increases 
the risk for other sight-threatening ocular conditions 
like retinal detachment, glaucoma, and cataract [15, 
16]. Also, both uncorrected myopia and pathologic 
myopia (characterized by lesions in the fundus like 
staphyloma, neuropathy, and maculopathy) are asso-
ciated with reduced quality of life [9]. Hence, investi-
gating the disease process, epidemiology, etiology, and 

Fig. 1 Schematic of emmetropia and axial myopia. A In an emmetropic eye, parallel rays of a distant object are focused on the retina. B When 
an eye is tasked to focus on a near object, without accomodation, the image of the object is focused behind the retina. C Accommodation can 
bring forward the image to focus on the retina. D In axial myopia, the eye’s axial length has grown longer than the dioptric focus of the eye. 
Light rays are therefore focused in front of the retina resulting in the blurred vision of a distant object. E Myopia can be optically corrected using 
a concave lens (spectacles or contact lenses) which diverges the light rays and moves the image into focus on the retina
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risk factors for myopia in addition to emerging thera-
peutic strategies for this condition is essential in halt-
ing the myopia epidemic.

Clinical features of myopia
Refractive error is typically measured by means of 
objective (i.e., autorefractor) or semi-objective (reti-
noscopy; objective from the patient’s perspective but 
not the operator’s as it requires examiner skill) tech-
niques as a starting point before subjective refraction. 
Accommodation induced by the eye’s ciliary muscles 
can influence refractive error, inflating the prevalence 
and degree of myopia by 0.63 to 0.89 D in children 
with active accommodation [17]. The gold standard for 
accurate subjective refraction is cycloplegic refraction, 
which involves using pharmacologic agents that tem-
porarily paralyze the ciliary muscles and accommoda-
tion. Alternatively, open-field autorefractors reduce 
the effect of residual accommodation and instrument 
myopia, are more repeatable and precise, and mini-
mize investigator bias [17].

AL is measured as the axial distance between the ante-
rior corneal surface to the retina (inner limiting mem-
brane or retinal pigment epithelium depending on the 
technique used) along the line of sight. AL is highly cor-
related with the refractive error [18] with approximately 
a 2.3 D increase in myopia associated with a 1-mm 
increase in AL and vice versa [19]. AL can be measured 
using ultrasound biometry, optical biometry, and optical 
coherence tomography (OCT) techniques [17].

An increase in the corneal steepness and power (i.e., 
decrease in radius of curvature) increases myopic refrac-
tion and vice versa [20]. Corneal curvature and the corre-
sponding power can be measured using keratometry and 
a wide range of corneal topography and anterior segment 
imaging devices.

Choroidal (inner sclera to outer retinal pigment epi-
thelium (RPE)), retinal (internal limiting membrane to 
Bruch’s membrane), and sub-foveal scleral (chorio-scleral 
interface to the outer scleral border) thinning are also 
observed in myopic eyes. These structural assessments 
can be measured using posterior segment OCT devices 
with enhanced depth imaging (EDI) [21], wide field/high-
penetration swept source OCTs [22, 23], and magnetic 
resonance imaging [24].

Emmetropization and myopia development
Emmetropization is a visually guided phenomenon that 
occurs from birth and regulates axial ocular growth to 
match the eye’s focal length with its focal power. Abnor-
mal emmetropization, or its maintenance,  is the fun-
damental problem in myopia development. This can be 
induced experimentally in a variety of ways. Depriving 

the eye in animal models from spatial vision results in 
ocular axial elongation and subsequent form deprivation 
myopia (FDM). Form deprivation can be induced in ani-
mals by eyelid sutures [25–28], translucent diffusers, or 
frosted goggles which reduce the sharpness and contrast 
of retinal images [29]. Clinically, FDM is reported in ocu-
lar conditions such as congenital ptosis and cataracts, 
which deprive the eye of visual stimulation [30–32]. 
Compensatory ocular growth towards emmetropiza-
tion is also driven by hyperopic or myopic defocus at the 
retina. Several animal species, most commonly chicks 
wearing positive or negative lenses were found to exhibit 
a rapid change in eye growth to compensate for the 
defocus and attain emmetropia [33]. Hyperopic defocus 
(image behind the retina) is generated by negative lenses 
which stimulate axial elongation, while myopic defocus 
(image in front of the retina) generated by positive lenses 
inhibits axial elongation [34–36]. The eye can decipher 
between myopic and hyperopic blur/defocus and alter 
its growth accordingly.

Emmetropization has two phases, a rapid infantile 
phase, and a slower juvenile phase. The rapid infan-
tile phase starts between 3 and 9 months of life, where 
a myopic shift in refraction towards low hyperopia or 
emmetropia occurs [37, 38]. During that phase, a fast 
increase in AL (~5 mm) is accompanied by compensat-
ing changes in ocular structures resulting in corneal and 
lens power reduction [39]. Concomitantly, new-born 
(3 months old) have an average cycloplegic hyperopic 
refraction of about +2 D, which rapidly reduces to +0.75 
D by the time they reach 3.5 years of age [40]. The AL 
increases from an average of 15 mm in new-born to 24 
mm by early adulthood and is counteracted by an equal 
and opposite change in corneal and lens power [41]. The 
slower juvenile emmetropization phase starts at 3 years 
and continues till adolescence [42]. Similarly, during this 
phase, AL grows along with changes in the cornea and 
lens, albeit at a much slower rate [42]. The majority of 
myopia onset occurs during this phase, often between 
ages 6 and 9 years [43, 44], followed by a rapid phase of 
myopic shift in refractive error, which plateaus by early 
adulthood [40]. Myopia onset, after the primary emme-
tropization period, can result from the failure to maintain 
an emmetropic state and not a failure of the emmetropi-
zation process [40]. The earlier the age of myopia onset, 
the higher the risk for high myopia and associated sight-
threatening conditions. Hence, delaying the onset of 
myopia may delay or prevent pathological myopia [45].

Genetic factors influencing myopia
Parental myopia significantly influences a child’s likeli-
hood of developing myopia. For instance, the proportion 
of children developing myopia is 32.9%, 18.2%, and 6.3% 
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with two, one, and no myopic parents, respectively [46]. 
Among a predominantly white population (89.1%), the 
odds of being a myope also increase from one (odds ratio 
(OR), 3.32) to two parents (OR, 6.40) with myopia [46]. 
Whereas in a mixed population, the ORs were 1.42 for 
one parent, 2.70 for two parents, and 3.39 for two parents 
with early onset myopia, respectively [47]. These findings 
are corroborated by longitudinal cohort studies with fol-
low-ups of 7 and 22 years [48, 49]. In addition, genome-
wide association studies (GWAS) and their meta-analyses 
have helped identify several single nucleotide polymor-
phisms (SNPs) associated with myopia [50–53]. None-
theless, common  SNPs  identified through GWAS thus 
far  can only explain 18.4% of spherical equivalent  herit-
ability [51]. The effect sizes of SNPs associated with myo-
pia are small, in the order of ±0.1 D [54]. Thus, association 
with parental myopia (i.e., inheritance or heritability) does 
not necessarily mean genetics are causative of myopia. 
The surge in myopia prevalence worldwide, occurring 
without significant genetic changes between generations, 
suggests a considerable role of behavior-influenced envi-
ronmental and lifestyle factors in myopia development 
[55, 56]. In the following paragraphs, we highlight some of 
the most prominent environmental and behavioral factors 
that have emerged as significant contributors to the onset 
and progression of myopia in children.

Environmental factors influencing myopia
Time spent outdoors
Both cross-sectional and longitudinal studies have 
reported a significant association between increased 
time spent outdoors and reduced myopia prevalence. 
Numerous cross-sectional studies including the Syd-
ney myopia study (SMS) (n=2367, 12 years old) [57], the 
Singapore Cohort of Risk factors for Myopia (SCORM) 
(n=1249, 11–20 years old) [58], the Beijing Myopia Pro-
gression Study (BMPS) (n=386, 6–17 years old) [59], 
among others, have independently reported a significant 
association between increased time outdoors and lower 
myopia rates and vice versa. Likewise, longitudinal stud-
ies including the Avon Longitudinal Study of Parents and 
Children (ALSPAC) (n=4837–7737, 7–15 years old) [60], 
the Sydney Adolescent Vascular and Eye Study (SAVES) 
(n=2103, 6 and 12 years old) [61], the Collaborative Lon-
gitudinal Evaluation of Ethnicity and Race (CLEERE) 
(n=731, 6–14 years old) [62], and the Orinda Longitu-
dinal Study of Myopia (OLSM) (n=514, 8–9 years old) 
[63], confirmed these associations between delayed myo-
pia onset and increased time spent outdoors. Austral-
ian children spending more time on outdoor activities 
(13.75 vs 3.05 h/week) [64] and longer daily outdoor light 
exposure (105 vs 61 min/day) [65] were found to have a 
lower prevalence of myopia (3.3%) [64] than Singaporean 

children  (29.1%). Interventional randomized controlled 
trials (RCT), two in Chinese (n=6925, 6–9 years old, 
n=3051, 6–14 years old, and n=1903, 6–7 years old) [66, 
67] and two in Taiwanese (n=571, 7–11 years old and 
n=693, 6–7 years old) [68, 69] school children demon-
strated that incorporating 40 to 80 min of interrupted 
recess time outdoors reduces myopia incidence. How-
ever, it should be noted that the reporting of light expo-
sure using questionnaires in these studies may be more 
prone to reporting bias compared to objective measures 
[70]. A recent RCT [71] evaluating the protective effect 
of 0, 40, and 80 min of additional time outdoors among 
6–9 years old Chinese school children for over 2 years 
observed a dose-response relationship between the out-
door exposure time and myopia onset and progression. 
The protective effect was associated with the objective 
measurement of both the duration of exposure and light 
intensity. Likewise, recent systematic reviews and meta-
analysis [72–76] along with their overviews [77, 78] rein-
force the compelling protective impact of time spent 
outdoors against myopia and highlight a 2–5% reduced 
OR of prevalent myopia and 24–46% reduction in rela-
tive risk of incident myopia for every additional hour of 
outdoor time per week.

While parents are being advised to promote outdoor 
activity for their children, a systematic review of evidence 
suggests increased time outdoors is effective in prevent-
ing the onset of myopia but is not effective in slowing the 
progression in eyes that are already myopic [73]. How-
ever, interventional studies have demonstrated that myo-
pia progression can indeed be mitigated by increasing the 
time spent outdoors [66–69], and a recent meta-analysis 
has reaffirmed this effect, revealing a pooled reduction 
effect of 0.13 to 0.17 D in myopic refractive error per 
year [78]. Conversely, the substantial uptick in indoor 
time and a reduction in outdoor activities among school-
children during the COVID-19 pandemic-related home 
confinement was linked to a rise in both the incidence 
of myopia and the rate at which it progressed [79, 80]. It 
is worth mentioning that some studies like the CLEERE 
[81], Anyang Childhood Eye Study (ACES) [82], amongst 
others [83–85], found no associations between the dura-
tion of time spent outdoors, the incidence of myopia, 
and its progression. These disparities in findings may 
stem from variations in cohort age, study duration, and 
research design, as well as differences in the criteria used 
for classifying myopia.

The protective effect of time outdoors against myo-
pia has primarily been attributed to the level and spec-
tral compositions of daylight (i.e., high light levels, broad 
spectral distribution) [29, 86, 87], the visual-spatial char-
acteristics (i.e., high spatial frequency), and accommoda-
tive profiles (i.e., less variation and demand) [88, 89] of 
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the environment outdoors, all lacking in most indoor 
environments, especially in schools. In the sections 
below, we discuss the “independent” effects of these envi-
ronmental features on myopia.

Features of the lighting environment
Lighting characteristics such as intensity, spectral com-
position, duration, pattern, and timing can synergistically 
affect ocular growth and development [29].

Light levels
Indoor illuminances generally range between 10 and 
1000 lux, whereas outdoor light levels on a cloudy day or 
under shade can vary between 10,000 and 30,000 lux [86] 
and reach more than 100,000 lux [90, 91] on a sunny day. 
Low daily light exposure measured using objective wrist-
worn light sensors has been associated with greater axial 
elongation and myopia [92]. Concurrently, exposure to 
both long-term [93] and short-term (30–120 min) light 
[94, 95] of moderate levels of illumination (500–1000 lux) 
induces a significant reduction in axial elongation and 
an increase in choroidal thickness (CT) in young adults. 
Low illumination levels (359 vs 671 lux) in the nursery 
(4–5-year-old children) [96] and the lowest daylight fac-
tor in elementary (6–7-year-old children) [97] school 
classrooms were suspected to be associated with myopia 
and axial elongation. Similar results echoed in a 1-year 
RCT (n=1713, 6–14-year-old children) with higher ambi-
ent light levels of 558 lux vs 98 lux at the desk and 440 lux 
vs 76 lux at the blackboard being protective against the 
onset and progression of myopia and ocular axial elonga-
tion [98].

Animal studies further provide evidence supporting 
the protective effect of high illuminance against myopia. 
Chicks [36, 91, 99, 100], infant monkeys [101], and guinea 
pigs [102] exposed to high-intensity light (≥10,000 lux) 
for 5–6 h/day showed reduced experimental myopia 
development.

Spectral composition of light
In addition to light levels, the spectral composition of 
light can affect emmetropization and myopia devel-
opment. Compared to the most frequently used arti-
ficial light sources indoors (e.g., fluorescent, light 
emitting diodes (correlated color remperature (CCT): 
2000 K – 6500 K), halogen), the spectrum of sunlight is 
dynamic across the day  and has a fuller distribution of 
wavelengths [87]. Natural sunlight contains ultra-violet 
(UV), near-infrared, and infrared (IR) wavelengths of 
light (Fig.  2A–C, Fig.  3). The effect of different wave-
lengths of light on myopia development is still not well 
understood, especially in humans. Torii et  al. showed 
that UVA light (360–400 nm), absent in commonly used 

indoor lights (Fig.  2E), could suppress myopia progres-
sion and reduce axial elongation in humans through the 
upregulation of the transcription factor early growth 
response factor-1 (EGR-1), encoded by the EGR1 gene 
[103], and via neuropsin (OPN5) stimulation in mice 
[104]. In an RCT on 6–12-year-old Japanese children 
(2-year follow-up), violet light-transmitting glasses were 
found to reduce axial elongation by 21.4% compared to 
glasses that do not transmit violet light. However, the 
effect was significant only in the sub-group of those per-
forming <180 min of near work or first-time glass users 
[105]. A 6-month randomized pilot study on using violet 
light-emitting glasses for 3h/day had a small but signifi-
cant protective effect on AL elongation in 8–10-year-old 
children. However, the sample size was only 10 and the 
effect was not significant for younger (6–7 years) or older 
(11–12 years) children [106]. Further investigations are 
warranted to assess both the efficacy and safety of UVA 
light exposure for myopia control. Similarly, in a labo-
ratory setting, exposure to short wavelength blue light 
(460 nm) for 1 h was found to reduce axial elongation 
in young adults (20–32 years) compared to both green 
(521 nm) and red light (623 nm) [107]. Likewise, the 
stimulation of blind spots (optic nerve head) using flick-
ering blue light (peak 450 nm) for 1 or 10 min increases 
retinal activity (increases b wave amplitude of bipolar 
cells) [108]. This intervention was built around the fact 
that  blue light would stimulate melanopsin present in 
the axons of intrinsically photosensitive retinal ganglion 
cells  (ipRGCs) having synaptic connections with dopa-
minergic amacrine cells, thus modulating the release 
of the neurotransmitter dopamine (DA) [108]. With 
DA regulating ocular growth (see the section  “poten-
tial mechanisms for light-driven myopia prevention and 
control” below), this effect may have an implication for 
myopia control. It is also possible that longitudinal chro-
matic aberration focusing various wavelengths of light 
differently relative to the retina, alters the outdoor effect 
on myopia by providing a visual cue (directional) during 
emmetropization [109]. A recent clinical study reported 
that 2 h of non-objective outdoor sunlight exposure 
(average 6000–50,000 lux) promotes choroidal thinning 
and retinal thickening compared to indoors (350 lux) and 
dark (<0.1 lux) [110]. This contrast from previous find-
ings of a transient increase in CT on the application of 
light exposure (indoor LEDs) [94, 95] is probably because 
of the differences in experimental protocol and lack of 
control over the confounders such as the visuo-spatial 
environment [89], caffeine intake [111], smoking [112] 
preceding, and during the 2-h long unsupervised outdoor 
activity. On the other end of the visible light spectrum, 
several randomized clinical trials (6–24 months of fol-
low-up) have shown great promise that repeated low red 
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Fig. 2 Spectral power distribution of light in different environments, both outdoors (O) and indoors (I)
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light (RLRL) (640 nm) administered for 3 min twice a day 
can slow myopia progression in children aged 7–15 years 
old [113, 114]. The strength of evidence for RLRL was, 
however, low, with large rebound effects reported after 
its discontinuation [115]. Furthermore, there have been 
safety concerns associated with RLRL, including reports 
of an isolated case of retinal damage that may potentially 
be linked to the procedure [116].

In addition to studies in humans, experimental stud-
ies in animal models have also shown that different 
wavelengths of light have distinct effects on myopia 

development. While shorter wavelengths of light (290–
495 nm) [103, 104, 117–125] have been shown to be pro-
tective against experimental myopia in chicks, mice, and 
guinea pigs, longer wavelengths (570–636 nm) of light 
[126–131] were found to be protective in tree shrews 
and some non-human primates. This variation in spec-
tral response among different species may be attributed 
to several factors, including differences in retinal photo-
receptor structure, sensitivity, and variations in experi-
mental protocols such as the duration of light exposure 
and its intensity [29, 124]. In addition, recent studies 

Fig. 3 A direct comparison of the levels and spectra of light measured indoors and outdoors. A Light levels outdoors are significantly higher 
than light levels indoors. B The light spectrum outdoors remains fairly unaltered when measured in different locations. Conversely, light levels 
outdoors can decrease by ~1 log unit between an open field and a denser building area or even indoors looking out from a window. Conversely, 
light levels can drop by more than 10 log units in a room equipped with artificial lighting. C The spectral power distribution of the average 
measurements outdoors (±SEM) compared to indoor scenarios. D, E, and F Normalized spectral power distribution of light outdoors compared 
to light indoors. While the spectrum remains fairly similar between 400 and 650 nm, windows block a considerable amount of ultra‑violet (<400 
nm) and near‑infrared or infrared light (>650 nm) (D). Similar differences are observed between traditional indoor LED lighting (CCT: 4000 K) 
in addition to reduced composition in wavelengths between 400–440 nm and 480–560 nm (E). Similar observations can be made when comparing 
artificial lighting to sunlight seen through a window (F)
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demonstrated that sun-like and blue-enriched light spec-
tra, even at low-moderate illuminances (200–400 lux), 
can slow the development and accelerate recovery from 
FDM in chicks [132, 133].

A comparison of light levels and spectra between different 
environments
As mentioned in the paragraphs above, light levels and 
spectra differ greatly between indoors and outdoors 
[29, 134]. To better highlight these differences, we per-
formed the study below. The spectral power distribution 
of ambient light was measured at the eye level in dif-
ferent outdoor and indoor locations using a calibrated 
spectroradiometer (ILT950, International Light Tech-
nologies, Peabody, MA, USA). In an open field, outdoor 
light intensity is at its highest, with the sun serving as 
the sole light source (Fig. 2A). As urbanization gradually 
becomes evident, such as between buildings with open 
tops (Fig.  2B), the spectral distribution remains similar 
but with a diminished light intensity. Further urbaniza-
tion, as seen when measuring light outdoors but under a 
shelter with a covered roof (Fig.  2C), results in reduced 
ambient light intensity while preserving a similar spec-
tral distribution. However, the introduction of modern 
urbanized buildings, even with a window view, leads 
to a drastic alteration in the indoor spectral distribu-
tion of available light, although light intensity remains 
comparable (Fig.  2D). Subsequently, when we bring the 
full extent of urbanization indoors in a setting devoid 
of windows and illuminated by LED light (Fig.  2E), we 
observe a further modification characterized by both 
decreased intensity  and a shift in the spectral distribu-
tion, now manifesting as two peaks at approximately 450 
nm and 600 nm.

When performing a direct comparison of light lev-
els and spectra measured both indoors and outdoors 
(Fig. 3), outdoor light levels are significantly higher than 
those encountered indoors (Fig.  3A). The outdoor light 
spectrum remains relatively consistent across differ-
ent outdoor locations, but light levels can decrease by at 
least one log unit when transitioning from an open field 
to a more densely built area or even when viewing from 
indoors through a window (Fig. 3B). Conversely, indoor 
light levels can drop by over 10 log units in spaces with 
artificial lighting (Fig. 3B, C). The natural light spectrum 
outdoors and indoors (through a window) remains fairly 
consistent between 400 and 650 nm, while windows 
block a significant portion of ultraviolet light (<400 nm) 
and near-infrared or infrared light (>650 nm) (Fig.  3D). 
Similar differences are observed when comparing tradi-
tional indoor LED lighting (CCT: 4000 K), with reduced 
composition in wavelengths between 400–440 nm and 
480–560 nm (Fig.  3E). Comparable distinctions can be 

observed when contrasting artificial lighting with sun-
light seen through a window (Fig. 3F).

Given the evident disparities between natural out-
door light and current indoor lighting, it has become 
imperative to urgently curate and tailor indoor lighting 
environments, whether artificial or natural, to promote 
healthier ocular development in children [135]. This is 
critical within educational settings, such as classrooms, 
where children predominantly spend their daylight 
hours.

Timing, duration, and pattern of light exposure
Experimental animal research findings suggest that the 
timing, duration, and pattern of light exposure can influ-
ence myopia. For instance, moderate light during mid-
day (2000 lux) is more effective at reducing myopia than 
evening exposure in chickens [136]. Longer light expo-
sures (2000 lux for 10 h) can be more effective than an 
equivalent dose of shorter, but brighter exposures (10,000 
lux for 2 h), irrespective of the exposure time-of-day 
(morning, mid-day, or evening) [136], whereas intermit-
tent exposure to high illuminances of light (15,000 lux) 
may be more effective than continuous light of equal 
duration and illuminance against FDM in chickens [137]. 
On the other hand, constant light (i.e., for 24 h) can dis-
rupt the emmetropization process [138] and evening 
exposure to light (700 lux) was reported to disrupt the 
circadian rhythm of ocular growth [139, 140]. The fre-
quency of a light flicker also modulates eye growth with 
low frequency stimulating and high frequency reducing 
eye growth [141]. It is worth mentioning that the distinc-
tive effect of these light features has been understudied in 
humans.

Potential mechanisms for light‑driven myopia prevention 
and control

Modulations in ocular neurotransmitters and signaling 
molecules: DA, a neuromodulator, is the most widely 
studied neurotransmitter and is proposed to influence 
eye growth and the emmetropization process [142]. DA 
is released by the amacrine and/or inter-plexiform cells 
of the retina [143, 144] and has a dose-response relation-
ship with the intensity of light [145–147]. Even intermit-
tent light exposure was found to be more effective than 
continuous light of equal duration possibly because of the 
activation of retinal ON and OFF pathways by flickering 
light, stimulating DA release [148]. Animal studies impli-
cated DA activity to mainly mediate via the D2 receptor 
pathway, although D1 and D4 (D2-like receptors) also 
play some role in refractive development, which remains 
controversial [149]. Even though DA levels get directly 
influenced by the duration and intensity of light, DA is 
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also found to be released under dark conditions, follow-
ing the circadian pattern of its release [150] and rod cell 
activation [151]. Furthermore, DA agonists [152, 153] and 
antagonists [99] were also used to support the role of DA 
in axial elongation. However, there are no clinical stud-
ies linking DA and myopia due to the obvious limitation 
of accessing human ocular tissue. DA is also known to 
modulate CT and axial growth by triggering the release 
of other neurotransmitters, such as nitric oxide (NO) 
[142, 154, 155]. NO was found to be dependent on light 
levels and reduces FDM [156]. Other neurotransmitters 
and signaling molecules linked with light and myopia are 
atropine, 5-hydroxytryptamine (5-HT), EGR-1 (ZENK), 
gamma-aminobutyric acid (GABA), retinoic acid (RA), 
melanopsin, and ipRGCs [29, 142, 155].

Blood flow DA enhances retinal perfusion and choroi-
dal blood flow in humans [157]. Reduced ocular blood 
flow can be implicated as a potential cause for choroidal 
and retinal thinning and associated eyeball elongation in 
myopia. To support this theory, lower ocular blood flow 
has been frequently reported in myopic eyes [158]. How-
ever, it is unclear whether reduced blood flow is a pri-
mary change that causes secondary thinning of the cho-
roid and retina or quite the opposite, i.e., the mechanical 
stretching of the eye reduces its wall thickness and causes 
a secondary lower demand for oxygen.

Vitamin D Vitamin D is available in small amounts 
from food such as fish and eggs, but the majority is syn-
thesized in the skin on exposure to sunlight (UVB). Sev-
eral cross-sectional studies found lower levels of vitamin 
D in myopes compared to non-myopes [159–163]; how-
ever, subsequent studies found no such evidence [164, 
165]. A review of time outdoors, vitamin D, and its asso-
ciation with myopia found an interrelation but without 
any biological plausibility [166]. Moreover, myopia is not 
a characteristic feature associated with rickets (vitamin D 
deficiency) which suggests vitamin D may indicate time 
outdoor levels (UVB exposure) but not have any protec-
tive effect itself [167].

Spatial frequency and other environmental visual features
The spatial frequency of the visual environment strongly 
differs between indoor and outdoor sceneries [88]. Urban 
outdoor environments were found to lack greenery and 
high spatial frequency with defocused retinal images 
which is similar to the image generated using diffusers 
to induce FDM in animals [89]. On the contrary, images 
of greenery contain significantly higher spatial frequency 
content [89]. The level of residential greenness in Spain 
and China has been reported to reduce spectacle use 
and the risk of myopia among preschool and school 

children [168–170]. While these benefits could poten-
tially be attributed to a reduction in daily screen time 
[168], it is important to consider that changes in spatial 
frequency and exposure to natural light may also be con-
tributing factors. Animal studies found intermediate and 
mixed spatial frequencies to reduce FDM compared to 
both high and low spatial frequencies in chickens [171, 
172]. Besides, accommodative micro-fluctuations were 
also  found to be dependent on the spatial frequency  of 
images, with the lowest fluctuation at medium spatial 
frequency [173, 174]. Further studies are required to elu-
cidate the impact of spatial frequency on ocular growth 
and myopia development in children.

Changes in color and luminance contrast are also 
found to provide cues for defocus and thus affect emme-
tropization. Higher red contrast in the defocused retinal 
image than the green and blue components under simu-
lation can relax accommodation and reduce eye growth, 
whereas higher contrast of the blue component com-
pared to the green and red was found to increase accom-
modation and promote eye growth [109].

Near work
Among children, indoor activities primarily consist of 
tasks such as reading, writing, and using digital devices 
at close but variable distances. When these distances are 
converted into diopters (which is the reciprocal of the 
distance in meters), it becomes evident that the indoor 
visual environment exhibits significantly greater diop-
tric variations compared to outdoor settings [88]. Ocular 
accommodation increases directly with the proximity of 
viewed objects and is due to an increase in lens convex-
ity (in addition to pupil constriction and convergence of 
the eyes during the accommodation reflex) with results 
in the increase of the optical power of the eye [175]. The 
accommodation demand profile for even basic tasks like 
reading a book or viewing a computer screen fluctuates 
by several diopters, even across the retina (i.e., from the 
central point of fixation (the fovea) to the peripheral 
retina) [88]. When the accommodation response is con-
sidered along with this dioptric variation, outdoor envi-
ronments have more uniform retinal focus than indoors 
which is associated with greater levels of defocus, espe-
cially in the peripheral retina. In addition, the average 
mismatch between the accommodation response and 
demand (known as the accommodative lag or error) 
across indoor visual scenes can be 2.88 D for reading and 
0.14 - 1.77 D for computer use (with superior and inferior 
retinal hyperopic defocus), while it can be around 0.05 D 
for outdoor tasks [88]. Briefly, accommodation is more 
predominant indoors compared to outdoors which is 
associated with long viewing distances, fewer variations 
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in accommodative demand, and more uniform retinal 
focus [88].

More time spent indoors and close reading distance 
have been associated with a higher risk of myopia 
among school children [176]. Notwithstanding, it is 
important to highlight that the correlation observed 
between myopia and near-work activities in studies 
does not necessarily establish a cause-and-effect rela-
tionship. In fact, it is plausible that the development 
of myopia could potentially lead to children spending 
more time indoors engaging in near-work activities and 
less time participating in outdoor activities [77].

Near vision tasks and myopia
Near work is traditionally considered as paper-based 
reading and writing at close distances. Nevertheless, the 
last few decades were marked by the adoption of digi-
tal devices in every aspect of human society, daily liv-
ing, and activity. Several studies like the OLSM, SMS, 
SAVES, and others [46, 61, 177–179] explored the asso-
ciation of myopia with near work using parental surveys 
on activities such as school assignments, digital device 
use, and watching television. Myopic children were found 
to spend more time studying, reading, and writing com-
pared to non-myopic children [46, 177]. A similar trend 
of additional near-work time was reported among urban 
children with a higher prevalence of myopia than rural 
children with lower myopia prevalence [177]. Children 
reading more than two books per week were also found 
to have three times higher risk of developing myopia than 
those reading less [179]. The intensity of near work [178], 
continuous reading (>30min), and closer working dis-
tance (<30cm) were also associated with an increased risk 
of myopia [61]. Meta-analysis of studies across five con-
tinents found near work to be associated with a greater 
risk (OR, 1.14) of myopia, with a significant more reading 
time (but not studying, watching television, or computer 
use) among myopes [180]. Yet, two recent meta-analyses 
found insufficient evidence of a definite risk between 
myopia and digital screen time [181, 182]. Even though 
the impact of digital device use (“screen time” estimated 
using a parental questionnaire) on childhood myopia 
failed to find any significant association between the 
two, an increase in myopic refraction by 0.28–0.33 D was 
observed for every hour spent in digital devices (smart-
phone and computer) [183].

Shifting away from the limitations of relying solely 
on questionnaires to evaluate near work, recent stud-
ies employing more objective measurement methods 
have revealed that myopic children tend to engage in 
near activities, specifically those closer than 20 cm, for 
extended durations, as determined using devices like 
Clouclip [184]. Additionally, these studies have indicated 

that myopic children also utilize double the smartphone 
data, indicating prolonged screen time, compared to 
their non-myopic counterparts [185]. Others have found 
that only 10 min or more of 2.5 D accommodative task at 
downward gaze was sufficient to stimulate axial elonga-
tion [186].

On the other hand, longitudinal studies [59, 62, 85, 
187] found no association of near work or number of 
books read in children. Outdoor activity, or lack of it, 
was hypothesized to have a stronger influence on the 
development of myopia than near work itself and their 
combined effect may be a better biomarker of myopia. 
Studying the combined effect of time outdoors and near 
work on myopia, “SMS” reported a protective effect of 
high time outdoors in children performing high levels of 
near work [57]. The follow-up study “SAVES” reported 
that in young children, spending less time outdoors and 
engaging in high levels of near work at age 6 significantly 
increased the odds of developing myopia by age 12 (OR, 
15.9). This risk remained elevated even for those with 
moderate (OR, 7.9) or low (OR, 5.3) levels of near work. 
In an older cohort, a similar trend was observed. Less 
outdoor time combined with high near work at age 12 
conferred an increased risk of myopia by age 17 (OR, 5.1). 
However, only those who spent more time outdoors were 
protected, while the risk was not significantly altered by 
variations in near work (moderate: OR, 2.45; high: OR, 
2.27). Conversely, spending moderate to low time out-
doors at baseline significantly increased the myopia risk 
by over 3-fold, regardless of near-work levels [61].

Potential mechanisms of near work‑related risk of myopia

Accommodation As mentioned earlier in this section, a 
potential explanation to the effect of near work on myo-
pia development is the changes in ocular accommoda-
tion status like lag (difference between accommodative 
demand and response) or fluctuation (standard deviation 
during sustained accommodation) [188]. Results from 
studies associating myopia and accommodative lag are 
mixed with reports of both lower amplitude compared to 
non-myopes [189, 190] and no association between the 
two [191]. Similarly, studies prescribing bifocals and pro-
gressive addition lenses (PALS) to reduce accommodative 
lag in myopes found mixed results with both clinically 
significant and non-significant reductions in myopia pro-
gression [192–194]. Moreover, these lenses also impose 
relative peripheral myopia alongside reducing the accom-
modative lag, and it is not clear whether this change in 
peripheral refraction or the accommodation influenced 
the result [195]. Likewise, accommodative micro-fluc-
tuation is thought to increase in myopes because of an 
increase in aberration and reduction in blur sensitivity 
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[196] and could generate hyperopic defocus and retinal 
blur, resulting in relative form-deprivation myopia. How-
ever, the current literature does not conclusively sup-
port this evidence [197, 198]. The understanding of how 
accommodation contributes to the development and pro-
gression of myopia remains elusive [195].
Relative peripheral refraction Accommodation shifts 
the hyperopically defocused image (behind the retina) 
during near work and focusses on the retina by the for-
ward movement of the ciliary body and lens shape altera-
tion [199]. Although the accommodation system works 
in response to foveal image defocus (blur) during near 
work, the resultant refractive change transpires for the 
entire retina. While performing near tasks, although the 
foveal image is pulled forward and focused on the retina, 
the curved shape (prolate, flatter retina in the periphery) 
of the retina results in relative hyperopic defocus at the 
periphery which stimulates axial elongation and conse-
quently myopia [200]. This relative peripheral hyperopic 
shift was demonstrated in several studies where the ocu-
lar shape became more prolate with accommodation and 
was hypothesized to be influenced by increased tension 
in the choroid [201]. Conversely, some studies found a 
relative peripheral myopic shift in myopes [202] while 
others found no shift in peripheral refraction in response 
to accommodative demand of up to 3  D [203]. In addi-
tion, pupil constriction associated with high-intensity 
of light outdoors and proximity to objects results in an 
increase in depth-of-focus and consequent reduction 
in peripheral defocus, aberration, and image blur [204–
206]. Higher-order ocular aberration, especially chro-
matic and spherical aberrations, are also related to axial 
elongation in myopic eyes [207–209]. Overall, there is a 
lack of consistency in the results possibly due to differ-
ences in study design and cohort of choice.

Urbanization and housing type
Myopia prevalence is associated with urban areas and 
high population density [59, 61, 67, 210–213]. In fact, 
countries known for their rapid urbanization, such as 
China, Singapore, and South Korea, have a high preva-
lence of myopia, ranging from 69 to 73% [7, 214, 215]. In 
addition, housing type, housing size, and living floor were 
revealed to influence myopia development [216, 217]. 
Myopia was more prevalent among children living (1) in 
apartments rather than in separate houses, (2) on higher 
floors compared to those living on lower floors, and (3) in 
large dwelling spaces [217–219]. However, housing types 
can be confounded by the level of education, income, and 
occupation [219], as living on higher floors and larger 
apartments in cities may contribute to the reduction of 
time spent outdoors and an increase in near work.

Pollution
Air pollutants such as carbon monoxide, nitrogen oxides, 
and ozone are hypothesized to damage the ocular tissue, 
reducing the release of DA and causing systemic inflam-
mation, oxidative stress, retinal ischemia, and resultant 
myopia [220]. Fine particulate matter  (PM2.5) and ozone 
 (O3) were also found to have an additive effect on myo-
pia development, albeit in an elderly population [221]. 
The association between myopia and traffic-related air 
pollutants PM2.5 and nitrogen oxides was found in a 
study conducted among 15,822 Taiwanese [222] chil-
dren and 2727 Brazilian [223] schoolchildren. However, 
it is important to note that this association is confounded 
by the fact that air pollution is often prevalent in urban 
areas, which are also characterized by less green spaces, 
low frequency visual environment, reduced time spent 
outdoors, disrupted sleep, all of which may contribute to 
myopia development.

Second‑hand smoking
Earlier studies with uncontrolled confounders like age, 
parental education, socio-economic status, and housing 
type presented conflicting associations between smok-
ing and myopia [224–228]. The possible pharmacologi-
cal causal pathway mediated via both nicotinic agonist 
and antagonist was also ill-defined [229, 230]. Recently, 
a large cross-sectional study on 6–8-year-old Hong Kong 
children has shown an association of second-hand smok-
ing exposure with both the onset and progression of 
myopia [231]. A small but dose-response effect of smok-
ing was observed with an increase in 0.07 D myopia or 
0.04 mm AL elongation with 10 cigarettes/day [231]. The 
study was cross-sectional in design and could not prove a 
causal relationship.

Seasons
It is unclear whether myopia onset and progression show 
seasonal variations, potentially due to variations in total 
light exposure [92]. The Correction of Myopia Evaluation 
Trial (COMET) [232] found that the rate of myopia pro-
gression and axial elongation decreased during summer 
and increased during winter, corresponding to individ-
ual light exposure levels [233]. Interestingly, the season 
of a child’s birth was also associated with his/her risk of 
developing myopia, with a clearer link especially in high 
myopes. Two large-scale studies in Israel (n=276,911, 
16–22 years old) [234] and the UK (n=74,459, 18–100 
years old) [235] observed a higher prevalence of myo-
pia among participants born in summer/autumn than 
those born in winter. However, there was little asso-
ciation between myopia risk and photoperiod. Subse-
quent studies in China reported different findings, i.e., 
lower spherical equivalent or more myopic refraction in 
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children exposed to the longest photoperiod by 0.44  D 
(n=722, 1–3 months old) [236]. Another study (n=1222, 
0–3 years old) [237] reported 0.12 D more myopic refrac-
tion in children born in winter compared to children 
born in summer. This association has been hypothesized 
to involve factors like perinatal light exposure, melatonin 
production, birth weight, and temperature. Multiple con-
founding factors make it challenging to definitively estab-
lish the relationship between seasons and myopia.

Lifestyle and parental factors
Physical activity
Physical activity (PA) measured using both objective 
(i.e.,  accelerometers) and subjective (i.e.,  question-
naires) means was shown not to be associated with myo-
pia development [211, 238]. Others reported PA to be 
inversely correlated with myopic refractive change [239], 
whereas ALSPAC [60] found PA to decrease the risk of 
incident myopia when done outdoors, concluding that 
the reported PA is mainly capturing information related 
to time outdoors. Recent reviews further underscore the 
role of increased outdoor time, rather than PA itself, in 
controlling myopia progression [77, 240]. Nonetheless, 
promoting sports and physical activity is still beneficial 
for encouraging children to spend more time outdoors, 
given the protective effect of outdoor time in reducing 
myopia progression [211]. Furthermore, the use of the 
word “sports” in questionnaires instead of PA, and its 
misinterpretation as only physically demanding exercise 
or games led to the categorization of outdoor cycling 
and walking as leisure time activity [240]. The influence 
of PA is confounded by the fact that most PA is likely to 
occur outdoors and its protective effect against myopia is 
observed with more active outdoor PA [77, 240].

Sleep and circadian rhythms
Circadian rhythms are internal physiological and behav-
ioral bodily processes that follow a roughly 24-h cycle 
[241]. These rhythms, generated by multiple oscillators in 
the body, are synchronized by the central biological clock 
located in the suprachiasmatic nucleus (SCN). The domi-
nant cue for entrainment of the SCN, and consequently 
other bodily circadian rhythms in humans and other 
mammals, is the light/dark cycle (for review see Najjar 
and Zeitzer [241]). The SCN controls the rhythmicity 
of the pineal gland responsible for melatonin secretion 
through both photic and non-photic inputs [242, 243]. 
Thus, the melatonin secretion profile, more specifically, 
dim light melatonin onset (DLMO) can be a reliable 
endogenous biomarker of the circadian phase or circa-
dian entrainment [244]. Even though DLMO has been 
linked with myopia, findings are conflicting, with evi-
dence of both differences [245] and no differences [246] 

in the DLMO phase, along with variable salivary and 
urinary melatonin amplitudes between different refrac-
tive groups [247]. Recently, Chakraborty and colleagues 
elegantly reported that myopic children exhibit a signifi-
cant DLMO phase delay (~1h) and lower aMT6s urinary 
melatonin levels compared to emmetropes [248]. Since 
melatonin levels are very sensitive to light [247], stud-
ies with robust methodological designs under controlled 
lighting conditions are essential to establish any relation-
ship between melatonin dysregulation and myopia devel-
opment. It is also worth mentioning that experimental 
work has also shown that the absence of circadian time 
cues (e.g., constant light or constant darkness) can dis-
rupt ocular circadian rhythms. In young rapidly growing 
eyes, this disruption often results in aberrant eye growth 
and failure to achieve emmetropization [249].

Sleep is under circadian and homoeostatic control and 
may also contribute to ocular growth and emmetropiza-
tion [250]. Myopic children have recently been reported 
to exhibit delays in sleep onset and wake-up time, which 
aligns with delays in DLMO [248], in addition to reduced 
sleep quality [248, 251] compared to emmetropes. Fur-
thermore, it has been postulated that lack of sleep or later 
bedtime could lead to additional near work, and thus 
higher risk for myopia [252]. To date, however, associa-
tions between sleep disorders (e.g., insufficient duration, 
poor quality, irregular, and late timing of sleep) and the 
incidence and progression of myopia remain deficient 
[253]. This is because most studies were limited by insen-
sitive outcome measures, differences in the definition of 
studied variables and participant demographics [253], the 
lack of cycloplegic refraction leading to overestimation of 
myopia, and recall bias from questionnaires estimating 
sleep characteristics [254].

In summary, the current body of evidence seeking to 
establish associations between sleep, circadian rhythms, 
and myopia still demonstrates a lack of robustness. To 
strengthen the validity of these findings, it is imperative 
to conduct further longitudinal studies that adhere to 
universally accepted definitions of sleep quality and myo-
pia. Additionally, the incorporation of objective measures 
for assessing sleep, light exposure, and near work is cru-
cial for accurately confirming any associations between 
sleep, circadian rhythms, and myopia [252, 254].

Diet and nutrition
The relationship between diet and myopia is controver-
sial. Whole grain, higher saturated fat, refined carbohy-
drates, and cholesterol intake were linked with greater 
axial growth and myopia [255–257]. In contrast, other 
studies found no association between the development of 
childhood myopia with vitamin A, protein, fat, and car-
bohydrate in diets [258–260]. As suggested earlier in the 
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“vitamin D” sub-section under the “Potential mechanisms 
for light-induced myopia control”, vitamin D probably 
offers no protection towards myopia and its blood serum 
level only indicates sunlight exposure [166, 167].

In a retrospective analysis of 6855 individuals aged 
12  to  25  years, no significant association with myopia 
was found for nutritional factors like serum vitamin D, 
glucose levels, or caffeine intake, except for increased 
insulin levels, which were related to a higher likelihood 
of having myopia [261]. In addition, a systematic review 
revealed that most studies on nutrients and dietary asso-
ciations with myopia are non-interventional and provide 
inconsistent evidence of a connection [262]. Given the 
complexity of diet and nutrition, more structured inves-
tigations are necessary to fully comprehend any potential 
associations with myopia.

Socioeconomic status and level of education
Socioeconomic status is defined by several factors such 
as parental education, employment, income, accessibility 

of services, school fees (private vs government), and 
housing type [187, 263–265]. A large-scale study in 
China found a positive correlation between myopia and 
higher socioeconomic status indicators such as urban liv-
ing, owning property, and duration of education [266]. 
The authors proposed that economic development fos-
ters a desire for wealth, leading to increased educational 
pursuit and heavier academic burdens, ultimately result-
ing in higher myopia rates [266]. While other studies 
found higher socioeconomic status to be associated with 
myopia [264, 265, 267, 268], some failed to find any such 
association [61, 187, 269]. The conflicting evidence on 
socioeconomic status and myopia may stem from varia-
tions in the definition and classification of socioeconomic 
status, as well as unmeasurable factors like parental 
involvement and academic pressure. More importantly, 
the effect of socioeconomic status can be due to more 
near time and less time outdoors.

As previously discussed in the “Near visual task and 
myopia” section, intensive near work, its duration, and 

Table 1 Summary of environmental and lifestyle factors influencing myopia

Factor Evidence Relationship with myopia

Time spent outdoors Strong • Increasing time outdoors is associated with less risk of myopia onset.
• Dose‑dependent effect.

Light intensity or light levels Strong • Higher levels of light are associated with less myopia.
• Potentially a dose‑dependent effect.

Spectral composition of light Possible • Interventions using red, blue, or violet lights have shown promising results.
• These findings require further evaluation with a longer study duration, better side‑effect 
evaluation, and possible rebound effect investigation.

Timing, duration, pattern of light exposure Possible • Protective, duration‑dependent effect of high illuminance light.
• The impacts of timing and patterns of light exposure are understudied in humans and lim‑
ited to animal studies.

Spatial frequency of the visual environment Possible • Lower spatial frequency is associated with an increased risk of myopia development.
• Findings are limited to animal studies and mathematical modeling in humans.

Physical activity Weak • Not an independent factor but rather linked to time spent outdoors.

Near work Strong • Intensity, continuity, and closer working distance are consistently associated with a higher 
risk of myopia.

Accommodation Possible • Inconsistent evidence on accommodation lag and amplitude.
• Impacts are not fully understood.

Relative peripheral refraction Possible • Peripheral retinal hyperopic defocus is associated with myopia development.
• These findings lack consistency.

Urbanization and housing Weak • Inconsistent and related to increased near work and reduced time spent outdoors.

Socioeconomic status Weak • Inconsistent and related to increased near work.

Education level Possible • Predominantly related to increased near work.

Pollution Weak • Related to urbanization and housing type and increased near work.

Second‑hand smoking Weak • Inconsistent and weak association between smoking and myopia.
• Confounded by education and subjective measurements.

Seasons Weak • Children born in summer have a lower incidence of myopia.
• Less myopia progression was observed during summer.
• Unclear link, confounded by multiple factors.

Sleep and circadian rhythms Possible • Potential link between delayed circadian phase and myopia.
• Inconsistent and conflicting evidence which needs objective quantification of sleep 
and light exposure.

Diet and nutrition Weak • Inconsistent and needs more structured investigations.
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close working distances have been linked to an increased 
risk of myopia and AL elongation. Consequently, the 
level of education (measured as years of education) is 
also a risk factor for myopia [270–272]. Even higher intel-
ligence quotient and better school performance were 
observed to be positively associated with myopia [273–
275]. Recent studies suggested that not only does the 
child’s educational level affect their ocular development 
and growth, but parental educational levels can also be a 
significant risk factor for the development of myopia in 
children [276]. However, it is important to note that this 
relationship is confounded by factors like parental myo-
pia (genetics), income, and occupation, reduced time 
outdoors [277].

Myopia is a multifactorial and complex condition 
affected by several environmental factors in isolation 
or combination. The summary of evidence from the lit-
erature on the environmental factors influencing myopia, 
the quality of evidence, and their relationship with myo-
pia documented so far is listed in Table 1.

Current treatment options for myopia control
While the refinement of environmental features and life-
style remains the best approach for preventing or delay-
ing the onset of myopia, today, a variety of optical and 
pharmacological treatment options are available to slow 
the progression of myopia. These include optical inter-
ventions using multifocal contact lenses, myopia control 
spectacles using defocus incorporated multiple segments, 
orthokeratology, and pharmaceutical intervention using a 
low-dose atropine [278, 279].

Conclusions
While genetics certainly play a role in the development of 
myopia, it is crucial to recognize the substantial impact of 
both the visual and non-visual environments in shaping 
its progression. The time spent outdoors and engagement 
in near-work activities stand out as the most influential, 
independent, determinants of myopia, with contrasting 
effects—the former protective, the latter exacerbating 
the condition. However, our understanding of the intri-
cate relationship between various light attributes, visual 
environments, and myopia remains limited—further 
studies need to be undertaken. Similarly, the associa-
tion between lifestyle factors like sleep and nutrition and 
myopia remains a topic of debate, also warranting further 
investigation. To effectively address childhood myopia, 
we must understand the complex interplay between out-
door activities, near visual tasks, and other environmen-
tal and lifestyle factors. This holistic approach will enable 
the development of tailored protective strategies includ-
ing the refinement of the indoor environment (lighting, 
spatial frequency, etc.) for myopia prevention.
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