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Light-sensitive brain pathways and aging
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Abstract

Notwithstanding its effects on the classical visual system allowing image formation, light acts upon several
non-image-forming (NIF) functions including body temperature, hormonal secretions, sleep-wake cycle,
alertness, and cognitive performance. Studies have shown that NIF functions are maximally sensitive to blue
wavelengths (460–480 nm), in comparison to longer light wavelengths. Higher blue light sensitivity has been
reported for melatonin suppression, pupillary constriction, vigilance, and performance improvement but also
for modulation of cognitive brain functions. Studies investigating acute stimulating effects of light on brain
activity during the execution of cognitive tasks have suggested that brain activations progress from subcortical
regions involved in alertness, such as the thalamus, the hypothalamus, and the brainstem, before reaching
cortical regions associated with the ongoing task. In the course of aging, lower blue light sensitivity of some
NIF functions has been reported. Here, we first describe neural pathways underlying effects of light on NIF
functions and we discuss eye and cerebral mechanisms associated with aging which may affect NIF light
sensitivity. Thereafter, we report results of investigations on pupillary constriction and cognitive brain sensitivity
to light in the course of aging. Whereas the impact of light on cognitive brain responses appears to decrease
substantially, pupillary constriction seems to remain more intact over the lifespan. Altogether, these results
demonstrate that aging research should take into account the diversity of the pathways underlying the effects
of light on specific NIF functions which may explain their differences in light sensitivity.
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Background
Two functional systems detecting light: photoreceptor
contribution and neural pathways
From a functional point of view, there are two sys-
tems detecting light in mammals and humans. The
first one is the classical visual system responsible for
image formation, and the second one is the non-
image-forming (NIF) system which detects environ-
mental irradiance and contributes to modulation of
many fundamental functions in living organisms. The
physiological, behavioral, and cognitive functions
which are modulated by light but not associated with
conscious image perception are called NIF functions.
These responses include circadian entrainment and
shift the timing of circadian rhythms such as hor-
mone secretion (melatonin, cortisol), heart rate, body

temperature, and the sleep-wake cycle. These NIF
effects are detected hours or days following light
exposure. NIF responses also include acute physio-
logical effects of light detected more rapidly, includ-
ing melatonin suppression, pupillary constriction,
alertness, and performance improvement as well as
cognitive brain responses [1–5].

Melanopsin retinal ganglion cells
In the course of the year 2000s, the discovery of mela-
nopsin (OPN4)-photosensitive pigment expressed by
intrinsically photosensitive retinal ganglion cells (ipRGC)
contributed to a better understanding of the neural bases
of the NIF system [6]. The crucial importance of OPN4
in NIF responses has been corroborated by animal and
human studies [7–10]. In humans, melanopsin is
expressed in a small subset of cells representing only
1–2 % of all retinal ganglion cells (RGC) [1, 10–14].
These photoreceptors measure the intensity of light (ir-
radiance detection) with a maximum sensitivity toward
short light wavelength (blue ~ 460–480 nm) [6, 7, 11].
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Melanopsin ipRGC have a low spatial resolution and
long latencies as compared to cone and rod responses,
and they show the ability to integrate photic energy
over long periods of time [6, 7, 13, 14]. To date, five
ipRGC subtypes (M1–M5) have been identified accord-
ing to morphological, molecular, and functional charac-
teristics [8, 11, 15]. M1 have more melanopsin pigment
than all other subtypes, and they can be subdivided
according to the transcription factor Brn3b (Brn3b
positive-M1 versus Brn3b-negative M1) [16–18]. M2
have extended dendrites and soma. M2 also shows
more complex connections than M1 including afferents
from the rods and cones suggesting that their intrinsic
photic response might be more modulated by inputs
from classical photoreceptors [18]. M3 has similar
characteristics to M2, with intermediate levels of mela-
nopsin [15, 19] and M4–M5 possess long dendrites,
abundant arborization, and very low levels of melanop-
sin (i.e., low intrinsic light response) [15, 18–23]. M1 to
M5 project to specific subcortical brain areas and play
different functional roles in the NIF and in the classical
visual systems [16, 22].

Visual and non-visual neural pathways
Classical visual system: image forming system
Specific neural pathways are described for visual and
non-visual systems (Fig. 1). Beginning with the eye, the
classical visual system uses mainly rods and cones for
image formation but also ipRGC for rudimentary visual
functions [20, 22]. Cones are responsible for photopic
vision (higher light intensity) with high spatial acuity
and color discrimination. The classical photopic system
in humans includes three types of cones showing mean
peak sensitivity (λmax) at 555 nanometers (nm), i.e., the
green part of the light visible spectrum. S-cones express
the short-wavelength-sensitive opsin cyanolabe (λmax

420 nm), M-cones express chlorolabe opsin (λmax

535 nm), and L-cones express a red-shifted opsin, the
erythrolabe (λmax 565 nm) [24]. Scotopic vision (i.e.,
contrast detection, dim light vision) is sustained by rods
[25] using rhodopsin photopigment (λmax 507 nm in
humans) [24]. Using the optic tract, the brain pathways
of the classical visual system project to subcortical nu-
cleus, such as the thalamic lateral geniculate nucleus
(LGN), the superior colliculus (SC), and the lateral

Fig. 1 Light-sensitive brain pathways. Simplified brain networks (not exhaustive representation) of the classical visual system and the non-image-forming
system. Abbreviations: PFC prefrontal cortex, SCN suprachiasmatic nucleus, SPVZ subparaventricular zone, VLPO ventrolateral preoptic
nucleus, PVN paraventricular nucleus of the hypothalamus, LH lateral hypothalamus, DMH dorsomedial nucleus of the hypothalamus,
LGN lateral geniculate nucleus, IGL intergeniculate leaflet, EWN Edinger-Westphal nucleus, OPN olivary pretectal nucleus, SC superior
colliculus, V1 primary visual area, LC locus coeruleus, VTA ventral tegmental area, ipRGC intrinsically photosensitive retinal ganglion cell,
RHT retino-hypothalamic tract. Eye illustration components modified from: http://2012books.lardbucket.org/books/beginning-psychology/s08-02-
seeing.html—reproduction/modifications in accordance with: http://creativecommons.org/licenses/by-nc-sa/3.0/ Brain template: reproduced with
permission from McGraw-Hill Education Material (source: Saladin, Kenneth S., Human Anatomy, Edition: 2, ISBN: 9780072943689, Figure 15.2-b, p. 425)
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posterior pulvinar complex (Pul-LP), before reaching the
primary visual occipital area (V1) and then at other neo-
cortical regions engaged in dorsal and ventral visual at-
tentional brain pathways [26–29] (Fig. 1). Animal studies
show that ipRGC (possibly non-M1 subtypes [22, 23])
also send projections to dorsal LGN (dLGN) and SC [16,
17, 22, 23, 30, 31]. These ipRGC projections play a role
in conscious perception of spatial brightness and speed
motion [16, 31–33]. Recent animal evidences also sup-
port the functional role of melanopsin-expressing ipRGC
projections to dLGN in visual responses optimization
with irradiance detection [33]. Overall, complex interac-
tions between classical (cones, rods) and non-classical
(melanopsin-expressing ipRGC) photoreceptors and
their projections contribute to the classical visual system
[16, 17, 20, 32].

Non-visual system/non-image-forming system
The second system, namely, the NIF system, uses ipRGC
in addition to rods and cones and shows a peak sensitiv-
ity in the blue part of the light spectrum (~460–480 nm)
[6, 7, 11, 13, 14, 31, 34]. A monosynaptic pathway, the
retinohypothalamic tract (RHT), conveys light informa-
tion from ipRGC axons [35, 36]. As illustrated in Fig. 1,
the NIF system directly projects via the RHT to sub-
cortical regions engaged in melatonin secretion,
pupillary constriction, and the regulation of the sleep-
wake cycle [2, 37, 38].
RHT directly connects the ipRGC from the retina to

the suprachiasmatic nuclei (SCN) of the anterior hypo-
thalamus, the master circadian oscillator (biological
clock) [1, 11, 39]. SCN is the endogenous master
biological clock that allows temporal organization of liv-
ing organisms, synchronizing circadian rhythms among
themselves as well as with the external environment.
SCN sends efferent projections to the hypothalamic and
non-hypothalamic structures [30], including the para-
ventricular nucleus of the hypothalamus (PVN), the dor-
somedial nucleus of the hypothalamus (DMH), and
finally, the intergeniculate leaflet (IGL) of the thalamus
which also sends projections to SCN [40]. Interactions
between the SCN, the PVN, the superior cervical gan-
glion (SCG), and the pineal gland support the neural
network of melatonin suppression [41] (see Fig. 1 mela-
tonin suppression). Without being exhaustive here,
many brain areas other than the SCN also receive direct
projections from the ipRGC. Thus, olivary pretectal
nucleus (OPN), the crucial node of the pupillary con-
striction pathway, receives direct projections from the
ipRGC. OPN sends projections to the Edinger-Westphal
nucleus (EWN) which in turn, innervate the sphincter
muscle of the pupil allowing pupillary constriction [42].
The ipRGC also sends direct connections to regions en-
gaged in the regulation of the sleep-wake cycle [2, 37, 38],

such as the ventrolateral preoptic nucleus (VLPO; sleep-
wake regulation core-region), the subparaventricular
nucleus/zone (SPVZ) of the hypothalamus, which is
involved in sleep regulation but also in motor activity,
as well as the lateral hypothalamus (LH), which con-
tains orexin (hypocretin) neurons regulating wakeful-
ness [20, 22, 30, 40]. Furthermore, light may also
affect the sleep-wake cycle via the connections
between the SCN and the DMH since the DMH also
sends projections to the VLPO, the LH, and the locus
coeruleus (LC) [40, 43, 44]. The amygdala, a structure
involved in emotional processes, also receives direct
projections from the ipRGC [30, 31] and might repre-
sent a key target of the NIF system by potentiating ef-
fects of light on alertness and mood. This limbic area
is part of the neural network named the “Salience Net-
work” associated with responsiveness to stimuli [45].

Photoreceptor contribution to NIF responses
Light stimulus characteristics influence the photore-
ceptor’s contribution to specific NIF responses. For
instance, light intensity, wavelength, and temporal
characteristics define the specific photoreceptor’s con-
tribution to pupil light reflex (PLR) [46–49]. At low
light intensities, rods and cones contribute to PLR but
cones’ contribution decreases as the duration of light ex-
posure increases and is minimal beyond 30 s [47, 48]. At
high light intensities (>12 log units per ph/cm2/s), ipRGC
mainly contributes to the sustained PLR [8, 47, 50], i.e., in
response to light exposure extending beyond 30 s.
Recently, complex photoreceptor interventions/com-

munications have also been reported for circadian
entrainment. Blue-yellow cone’s color discrimination/
opponency seem to modulate the ipRGC signal trans-
mission to SCN neurons making them sensitive to color
[51]. Thus, SCN cells would be sensitive to both bright-
ness and color. This could correspond to an evolutionary
strategy using color as a time-of-day indicator based on
spectral composition of the solar cycle and twilight tran-
sition [51].
Studies have reported that 80 % of all ipRGC projec-

tions to the SCN are from M1 Brn3b-negative and 20 %
are from M2 [21, 52]. In contrast, 45 % of ipRGC projec-
tions to the OPN (pupillary constriction) are from M1
Brn3b-positive (shell part) and 55 % are from M2 sub-
type (core part) [10, 21, 52]. Relative contribution of
each photoreceptor and interactions still need to be de-
termined for specific NIF functions [2, 10, 23]. The clas-
sical visual system and the NIF system are different by
their respective functions but evidences now reveal that
a complete dichotomy of these two systems is outdated
at the eye and brain levels. An integrative hypothesis
suggesting a multi-dimensional system with a relative
segregation of different networks, rather than their full
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independence, seems more likely based on the observed
data. Further research will help identify retinal and
neural networks involved in the effects of light for each
NIF functions.
Overall, as for the classical visual pathway, the under-

lying neural pathways of the NIF system are complex
and several brain areas are involved in the mechanisms
by which changes in the quality of the light environment
affect various NIF functions [22, 30, 31].

Effects of light on alertness and cognitive functions: short
versus longer wavelengths
In agreement with the peak sensitivity of each light-
detecting system, many studies have confirmed greater
sensitivity of non-visual responses under blue mono-
chromatic light exposure (~460–480 nm), in comparison
to longer wavelengths such as green monochromatic
light [4, 5, 53–59]. Hence, the impact of light on sleepi-
ness, alertness, performance, as well as the modulation of
cognitive brain functions are greater under blue mono-
chromatic light and blue-enriched light exposure, as com-
pared to longer light wavelengths [4, 5, 53–57, 60]. Lower
levels of subjective sleepiness [53, 61, 62], but also of ob-
jective alertness as measured with electroencephalogram
(EEG), are reported under blue light exposure, as com-
pared to longer light wavelength or darkness [53].
Higher performance speed to the psychomotor vigi-
lance task (PVT) is also observed when exposed to
blue-enriched light exposure as compared to longer-
enriched lights [4, 63, 64]. Likewise, blue monochro-
matic light exposure, as compared to green and red
monochromatic lights, induces higher amplitude levels
on the P300, an event-related potential associated with
attentional demands [65].
Since 2004, a number of studies investigated the

brain mechanisms underlying the stimulating effects
of light on alertness and cognitive functions in
humans [5, 56, 57, 66–72]. These investigations
showed that light exposure, particularly blue light,
during the execution of cognitive tasks potentiate
brain activations of subcortical structures associated
with vigilance including the hypothalamus, brainstem
(LC), thalamus, and limbic areas (the amygdala and
hippocampus) likely before spreading to cortical re-
gions engaged in the ongoing task [5]. Recently and
according to a theory of melanopsin bistable proper-
ties [59, 73, 74], long wavelength light exposure
(589 nm) administered an hour before a given test
light exposure increases the impact of that test light
on some brain responses (i.e., pulvinar, cerebellum,
frontal areas) associated with the execution of a cogni-
tive task [75]. Overall, these studies confirmed that in
young subjects, light exposure, particularly blue light,
has greater modulating effects on cognitive brain

functions than other light wavelengths most likely
through melanopsin photoreception and triggers brain
activation increases in regions related to alertness and
to executive functions (for a review, see [5, 76]).

Aging and non-image-forming system modifications
Age-related differences in the impact of light have been
reported for some acute non-visual responses, with a
decreased effect of monochromatic blue light (456 nm) on
clock gene expression, subjective alertness, sleepiness, and
mood in older, as compared to young individuals [77–79].
However, some investigations did not find age-related re-
duction in the impact of light when using polychromatic
white light [80–82]. A potential decrease in the impact of
light remains therefore debated, and it could be that
age-related changes occur for specific wavelengths of light
or for specific NIF responses but not for others.
Age-related modifications from the eye to the brain

may affect the NIF system and contribute to lower sensi-
tivity to light in aging [83–89]. Circadian oscillations are
driven by rhythmic expression of clock genes and auto-
regulatory transcriptional-translational feedback loops
over approximately a 24-h period. Aging appears to be
associated with changes in clock gene expression with a
reduced amplitude in Bmal1 and Clock expression in
SCN [90–92], lower Per2 expression in the pituitary
gland [93], and lower Per 1,2,3 expression at the periph-
eral level (liver, heart) [94]. Age-related differences under
light exposure were also revealed including reduction in
Per1 expression after light pulses [90–92] and reduction
of Per2 expression following blue morning light expos-
ure [79]. Since Per 1–2 expression is rapidly induced by
light and is required for entrainment, age-related tem-
poral disorganization may partly result from lower SCN
sensitivity to photic stimulation (for a review, see [95]).
Age-related modifications among other molecular and

neuronal factors might also contribute to decrease sensi-
tivity to light. Several studies have reported age-related
changes in the rhythmic synthesis, release, and expres-
sion of vasoactive intestinal polypeptide (VIP) and argin-
ine vasopressine (AVP), two important neuropeptides
expressed in the SCN [95–102]. These changes might
affect the precision and robustness of rhythmic informa-
tion transmission by the SCN to other neural sites and
might contribute to attenuated photic input signal of the
circadian timing system in aging [99, 100, 102, 103].
Other alterations such as a reduction in gray and white
matter and changes in vascularization of the brain might
contribute to age-related modifications of the NIF sys-
tem [104–107]. Specifically, decrease density of norepin-
ephrine (NE) neurons in the LC [108], SCN deficits in
membrane properties and GABAergic postsynaptic
current amplitude [88], and hypertrophy of astrocytes
and microglia in SCN (responsible for glutamate
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uptake—the main neurotransmitter of the RHT) [109]
have been reported. Again, all these modifications might
induce functional deficits among various systems includ-
ing the non-image-forming one.
Last but not least, many important age-related changes

also occur at the eye level: there is a decrease of photo-
receptor sensitivity, a reduction in pupil size, known as
senile miosis, and an increase of ocular crystalline lens
absorption known as “lens yellowing” [85, 86, 110–115].
The combination of all these changes is very likely to re-
duce the amount of light reaching the retina and may
modulate the impact of light on NIF functions.

Pupillary constriction and brain sensitivity to light in the
course of aging
In order to improve the understanding of the impact of
light on non-visual older subjects, we completed two re-
search protocols. We aimed at measuring pupillary con-
striction [116] and non-visual cognitive brain activity while
exposed to light [117]. We recruited two groups of subjects,
16 young and 14 older individuals (see [116] and [117] for
complete sample description). All were healthy, right
handed, non-smokers, slept between 7 and 9 h per night,
were non-medicated, and MRI compatible. They also
underwent an optometric exam to make sure they were free
of ocular disease. The main hypothesis of our investigations
was that in older, compared to young subjects, we would
detect a reduction in pupillary and brain responses to light.

Pupillary constriction in relation with healthy aging
In the pupillometry protocol, subjects were first main-
tained in darkness for 15 min before we captured baseline
pupil size. Subjects were then exposed for 45 s to three ir-
radiances levels of blue (480 nm) and green (550 nm)
monochromatic light (low 7 × 1012 ph/cm2/s, medium 3 ×

1013 ph/cm2/s, high 1 × 1014 ph/cm2/s). Resting period in
darkness lasted 2 min between each light exposure.
As expected, at the baseline (before any light expos-

ure), analysis of the raw pupil size area showed that
older subjects have a smaller pupil as compared to
young subjects [116]. As PLR was the NIF response of
interest, we subsequently estimated the sustained
pupillary constriction for each age group under each
light condition. Normalized pupillary constriction was
calculated for each subject using the value under light
exposure in relation with the baseline pupil size. As
illustrated in Fig. 2, results showed that pupillary con-
striction was greater with blue than green light and
greater at higher irradiance. However, analysis did not
reveal significant age-related differences for sustained
pupillary constriction. Our results concur with senile
miosis, as absolute pupil size was smaller with age.
According to the peak sensitivity of the NIF system, we
also observed greater effects of blue rather than green
lights and higher rather than lower irradiances. However,
similar sustained pupillary constriction was observed in
both age groups suggesting that despite a reduction of
the amount of light reaching the retina, this non-visual
response to light is maintained in healthy aging.
Our first study confirms the reduction in pupil size

with aging and the greater impact of blue versus. green
light on PLR [116] but does not reveal significant age-
related differences in pupil dynamic under light expos-
ure. This original result indicates that PLR might dif-
fer from other acute non-visual responses showing a
decrease in sensitivity to blue light with age (i.e., sup-
pression of melatonin secretion, modulation subjective
alertness, mood and the expression of certain clock
genes) [77–79].
As previously exposed, different NIF responses are

regulated by partially independent neural networks
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[23, 30, 118–120]. These anatomical differences sup-
port the possibility of variations in the age-related
changes in effects of light on various NIF functions,
sustained for instance by the OPN (PLR) or the SCN
(entrainment). Specific light sensitivities for different
NIF responses [121, 122] might also contribute to the
diversity in the changes in the impact of light in aging.
Animal evidences revealed indeed higher sensitivity
thresholds (i.e., requiring higher light level) for the circa-
dian entrainment phase response and masking (i.e., motor
activity suppression in nocturnal animals under light ex-
posure) than for pupillary constriction [121, 122]. It is
plausible that the sensitivity threshold of the pupillary re-
flex is low enough to trigger a pupillary response similar
to that of young people despite the reduction of photic in-
put reaching the retina.

Brain sensitivity to light, cognition, and healthy aging
For the neuroimaging study, the same two groups of
subjects completed an fMRI recording at night, 1 h after
their habitual sleep time. They had to follow a regular

sleep schedule 7 days prior to the experiment and were
maintained in darkness 2 h before the experimental light
exposure. In the scanner, subjects completed 28 blocks
of 45 s of the auditory working memory two-back task
while maintained in a darkness condition or under blue
monochromatic light of three irradiance levels (low 7 ×
1012 ph/cm2/s, medium 3 × 1013 ph/cm2/s, high 1 ×
1014 ph/cm2/s). The two-back task required the subjects
to answer, with a response box, whether each letter pre-
sented was the same as the two prior letters. This task
engaged auditory processing, attention, storing, compar-
ing, and updating information in working memory [123].
Subjects were well trained to the task prior to the fMRI
recordings. Consequently, behavioral analyses revealed
no significant differences between the two groups and
between the four light conditions for accuracy and re-
sponse time values [117]. This was intended and consist-
ent with a ceiling effect in both groups, so that the
limited amount of light we administered could not sig-
nificantly impact performance. This situation was ideal
for the purpose of our study which was to investigate
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the brain mechanisms involved in the impact of light as
we are sure that behavior did not significantly bias our
fMRI results.
In accordance with literature, and supporting that the

subjects performed the task correctly, we first showed
brain activations in areas known to be involved in the
task including the frontal gyrus, the superior parietal
and temporal gyrus, the intraparietal sulcus (IPS), the
motor and sensorimotor cortices as well as the thalamus,
and the cerebellum [117]. We also investigated which
brain areas responded to the presence of light during the
execution of the task, independently of the irradiance
levels, in young and older subjects. Results indicated
common brain activations in young and older individ-
uals in the LGN, the lingual gyrus, the calcarine sul-
cus, and in the occipital gyrus. These common brain
activations in relation with the effects of light are pre-
sented in Fig. 3.

Analysis also revealed significant age-related differ-
ences as young subjects presented a higher impact of
light than older subjects (represented in blue in Fig. 3)
in the thalamus and a region compatible with the ventral
tegmental area (VTA), important areas for arousal regu-
lation [124], in the amygdala and the insular cortex, re-
gions involved in emotional regulation [125], as well as
in the frontal operculum and in the cerebellum. Some of
these regions have been previously reported in non-
visual effects of light in young subjects and are part of
the salience brain network engaged in the selection of
most relevant information to guide behavior [45, 126].
Less brain sensitivity to light among regions of this net-
work might have important impacts on brain sensitivity
to light in aging on alertness and attention.
We also investigated which brain areas responded dif-

ferently with age to increasing blue light irradiance levels
during the ongoing cognitive task. Again, results showed
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common brain activations in young and older subjects
in the calcarine sulcus, as well as in the inferior, median,
and superior occipital gyrus. As represented in Fig. 4,
these regions seem to increase their activation with in-
creased light intensity in both groups. More importantly,
our results also pointed toward age-related differences in
the prefrontal cortex, an important region for higher
cognitive functions [127], in the occipital cortex, a re-
gion related to the visual system, and finally, in the cere-
bellum. Our results suggested an increase in frontal,
occipital, and cerebellum brain activations in young sub-
jects following light increase intensity, while in older
subjects, this phenomenon was absent.
Overall, these results indicated that light is still able to

modify ongoing brain activity in older individuals in the
context of our protocol. Age-related modifications are
also evident at the irradiance levels we used. Based on
our results, one could argue that light impact is better
conserved in aging in brain areas that are typically asso-
ciated with vision (LGN, calcarine sulcus, and occipital
areas), while areas involved in alertness and cognition
regulation seem to undergo a more pronounced dimin-
ution in their response to light.
Reduced age-related effects of blue monochromatic

light on the thalamus and VTA activity might be related
to various molecular and neural changes in the arousal
system. Hypocretin/orexin neurons, the expression of
which decreases with age [128], innervate many cell
groups including “wake-active” monoaminergic popula-
tions of the VTA [129–132]. A reduced impact of blue
monochromatic light in the VTA-compatible area sug-
gests that the dopaminergic system could be involved in
age-related changes of the stimulating effect of light on
brain responses. The VTA is an important source of
dopamine in the brain and is crucial both for the regula-
tion of sleep and alertness and for cognition and mood
[124]. It is notable that the VTA sends projections to the
SCN [133]. Since dopamine dysfunction is thought to
play an important role in the cognitive decline found
in healthy aging [134], the reduced effect of light
upon brain-related dopamine regions might contribute
to reduce the stimulating effect of blue light on cog-
nitive functions.

Conclusions
Lighting-up the aging brain
Light is a simple mean that could easily be used to im-
prove cognition, sleepiness, mood, and sleep in normal
and pathological aging. Daytime sleepiness is a signifi-
cant characteristic of specific neurodegenerative disor-
ders and is associated with not only current cognitive
impairments but also increased risks for developing cog-
nitive decline [135–141]. In Alzheimer’s and Parkinson’s
disease patients, excessive sleepiness and fatigue have

been associated with increased functional impairment
[142] and cognitive dysfunction [143]. While Parkinson’s
disease is directly related to dopamine dysfunction [144],
a slow degeneration of hypocretin neurons has been re-
ported over the course of Alzheimer’s disease [130]. Im-
portantly, light exposure has a positive effect on sleep
and mood in Parkinson’s disease patients and improve-
ment of cognitive functions have been reported using
2 h of bright light therapy (polychromatic light—3000 lx
and over) in Alzheimer’s disease patients [145, 146].
Qualitative positive effects of light exposure on sleep,
mood, and cognition have also been reported in Alzhei-
mer’s disease patients with greater effect of blue-green
bright light exposure in the morning as compared to
dim red light [147].
The spectral quality of light may be a crucial factor to

consider when dealing with light in aging. Besides
monochromatic light, one could use polychromatic light,
enriched in blue wavelength for instance. These would
be more applicable to real life and have been reported to
improve some aspects of cognitive performance relative
to classical incandescent light [64, 148]. Each non-visual
response to light will require special attention as they
may be differently affected by age since they rely in part
on different photoreceptor contributions and partly in-
dependent brain pathways.
Furthermore, investigations need to identify light

characteristics (quality, quantity, duration) that can
effectively modulate alertness and cognitive perform-
ance in aging. In order to reach a better understand-
ing of the eye factors upon brain sensitivity to light,
future investigations need to measure pupil size at
the time of the experience or to include older sub-
jects who underwent lens replacement following a
cataract surgery. As it is now recognized that mela-
nopsin gene polymorphism (OPN4) influences pupil
size under light exposure [149, 150] and that clock
gene polymorphism (PER3) influences non-visual sen-
sitivity to light according to sleep pressure and circadian
phase [57, 63, 75], it is also crucial to consider genetic-
s—age interactions. Aside from pharmacology, we may
then be in a position to provide light tools to improve life
quality in aging.
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