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Abstract

Background: The purpose of this study was to quantify cardiorespiratory and metabolic responses to body mass-
based squat exercise, with specific emphasis on the relationships with the exercise duration.

Methods: Fifteen healthy young men performed body mass-based squat exercise as well as an incremental loaded
bicycle test, which determine maximal oxygen uptake and maximal heart rate, with an interval of 2 days between
the tests. During both tasks, oxygen uptake, blood lactate concentration (BLa), and heart rate (HR) were determined.
Oxygen uptake in both tasks was divided by body mass (VO,). VO, in the squat task was normalized to VO, in the
incremental test (%VO,max). In addition, electromyograms (EMGs) were also recorded from the vastus lateralis,
rectus femoris, vastus medialis, biceps femoris, and gluteus maximus.

Results: Cardiorespiratory parameters and BlLa did not change after 5 min from the exercise onset. The %VO,max
and Bla during body mass-based squat exercise were significantly related to maximal VO, obtained by the
incremental test. Metabolic equivalents reached 6.5 when the squat exercise was continuously performed for 5 min.

Conclusions: These findings indicate that (1) the squat exercise adopted here is of moderate intensity and
predominantly uses aerobic energy supply after 5 min from the start of the exercise and (2) relative intensity during
the exercise depends on an individual’'s maximal aerobic power.
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Background

It is well known that a training program consisting of
many repetitions with low load is an effective maneuver
for developing local muscular endurance [1]. Recently,
Miyamoto et al. [2] have observed that 4 weeks of low-
intensity electrical muscle stimulation into the knee ex-
tensors improved peak oxygen uptake and ventilatory
threshold during incremental bicycle exercise. This sug-
gests that low intensity and high repetition resistance
training can enhance not only local but also systemic en-
durance capacities. In addition, many studies have tried
to determine lactate threshold (LT) at which glycolytic
metabolism is enhanced and energy supply shifts from
aerobic to glycolytic metabolism [3], by using
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incremental resistance exercises of the lower extremities
[4-8]. It has been shown that LT intensities during half
squats [8] and leg press [4—6] exercises were 25 and 27%
of one repetition maximum (1RM), respectively. When
the squat exercise at the corresponding intensity is con-
ducted continuously for 30 min (30 s active with an
interval of 1 min x 20 sets), respiratory response and
blood lactate concentration during the exercise appear
to be stable after 3 to 6 min from task onset, indicating
that squat exercise at LT intensity is predominantly aer-
obic in nature [6]. Exercise at LT intensity can be con-
ducted continuously without blood lactate accumulation
because of equilibrium between the rate of lactate ap-
pearance into and disappearance from the blood occurs,
reflecting a predominance of aerobic metabolism [9, 10].

It is known that body mass-based exercise training
(e.g., squat, calf raise, and hip flexion exercises) is feas-
ible and effective for improving muscular strength of the
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knee extensors in elderly populations [11, 12] and per-
cent body fat, muscular strength of the knee extensors,
and jump performance in adolescences [13, 14]. A train-
ing scheme consisting of body mass-based exercise has
some advantages in that everyone can perform such
exercises anywhere with no special apparatus. However,
prior studies have provided less information concerning
cardiorespiratory and metabolic responses to body mass-
based squat exercise. Isear et al. [15] have reported that,
for young men, activity level of the vastus lateralis dur-
ing body mass-based parallel squat exercise was 33% of
that observed during maximal voluntary contraction.
Taking this into account together with the reports of
Garnacho-Castano et al. [8] and de Sousa et al. [6], it
may be assumed that, at least for young adults, body
mass-based squat exercise would be predominately
supported via aerobic metabolism when it is performed
continuously.

The purpose of this study was to quantify cardiorespi-
ratory and metabolic responses to body mass-based
squat exercise, with specific emphasis on the association
with the exercise duration. To this end, we mainly
focused the exercise times at which the measured vari-
ables reached the stable conditions and the magnitude
of the measured variables at the corresponding times. As
mentioned above, the previous studies that examined
the effects of body mass-based exercise training have
focused on improvement in muscle function and body
composition. The findings obtained here will be useful
for discussing whether or not body mass-based exercise
can be a training modality for improving not only
muscular endurance but also cardiorespiratory function.

Methods

Subjects

Fifteen healthy men (age, 24.2 + 4.8 years; height, 171.2
+5.1 cm; body mass, 65.4+7.4 kg; percent body fat,
16.0 + 4.4%, means + SDs) participated in this study.
Physical characteristics of the subjects are presented in
Table 1. All subjects were involved in physical activities
such as jogging and cycling for at least 3 h per week, but
they did not perform regular resistance training. All
subjects were free of long-term use of oral steroids use
or other medications that can influence weight gain,
multiple food allergies, moderate or substantial physical
or developmental disability, or infection. They refrained
from eating, smoking, or drinking tea or coffee for 2 h
prior to the test. This study was approved by the ethical
committee of the National Institute of Fitness and Sports
in Kanoya. Prior to the experiment, all subjects were in-
formed of the purpose and procedures of the study and
possible risks. Written informed consent was obtained
from all subjects.
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Table 1 Physical characteristics of subjects
Age, years 242+438
Body mass, kilograms 654+74
Height, centimeters 171.2+5.1
Percent body fat, % 160+ 44
KET/BM, newton-meter per kilogram 30£09
BLa at LT, millimoles per liter 23+05
%VO,max at LT, % 465+6.2
%HRmax at LT, % 658 +4.8

Data are presented as means + SDs

KET/BM knee extension torque relative to body mass, BLa blood lactate
concentration, LT lactate threshold, %VO,max oxygen uptake during squat
exercise relative to maximal oxygen uptake, %HRmax heart rate during squat
exercise relative to maximal heart rate

Experimental design

Subjects participated in two experimental sessions with
an interval of 2 days between sessions. An incremental
loaded bicycle test was conducted to determine maximal
oxygen uptake (VO,max) and maximal heart rate
(HRmax) in the first session. In the second session, sub-
jects continuously performed 200 times body mass-
based squat exercises. Respiratory gas, heart rate, blood
lactate concentration, knee joint angle, and muscular
activity were measured during both sessions.

Incremental loaded bicycle test

The incremental test was conducted in accordance with
the procedure used by James et al. [16], using an elec-
trically braked bicycle ergometer (COMBI, AEROBI-
KE75XLIII, Tokyo, Japan). After a 5-min rest, subjects
pedaled the bicycle with an initial load of 75 W. The
load was incrementally increased by 25 W every 3 min
until exhaustion. Pedaling frequency was held constant
at 60 rpm with the aid of an audible metronome. We set
the following criteria to judge termination of the test: (1)
oxygen uptake was at a steady state, (2) rating of per-
ceived exhaustion (RPE) was 19 or 20, (3) subjects were
unable to maintain a pedaling rate of 60 rpm, (4) re-
spiratory exchange ratio (RQ) >1.15, and (5) heart rate
was at steady state (estimated value + 15 bpm) [17].

Body mass-based squat exercise

Subjects continuously performed a body mass-based
squat exercise, completing 200 repetitions. The squat
task was conducted at a tempo of 45 rpm (2 beats/time)
which allows subjects to carry it out correctly [18]. Sub-
jects stood with their legs to shoulder width and squat-
ted with the knee joint flexed at 90° from standing
position, and then returned to initial position. A box was
put behind the subjects to control range of motion dur-
ing the squat task. Subjects were asked to pull their hip
behind, and not to lean their trunks forward and move
their knees forward, and stop the motion when changing
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from ascending (descending) to descending (ascending)
phases during the task.

Respiratory gas

During the tasks, respiratory gas was collected continu-
ously to determine oxygen uptake (VO,), carbon dioxide
production (VCO,), minute ventilation (VE), and respira-
tory exchange ratio. Before the experiment commenced,
flow volume calibration and oxygen gas calibration were
performed using an automated breath-by-breath system
that was previously calibrated (Vmax Specrta 229, Sensor
medics Corp., Yorba Linda, CA, USA). During the incre-
mental test, VO,max was taken to be the mean VO, over
the final 30 s of the incremental phase [19]. During the
squat exercise, respiratory gas data was averaged for each
1 min epoch. VO, during both tasks was normalized to
body mass. The VO, during the squat task was normalized
to VO,max and expressed as relative value (%VO,max).
Metabolic equivalents (METs) during the body mass-
based squat exercise were calculated from metabolic rate
at rest (3.5 ml/kg/min) [20, 21] and VO, during the squat
exercise.

Heart rate

Heart rate (HR) was monitored every 1 s using telemetry
(Polar RC3 GPS, Polar Electro OY; Kempele, Finland).
HR was averaged over every 1 min, and normalized to
HRmax, and expressed as relative value (%HRmax).

Blood lactate concentration

Blood sample (0.3 pl) was collected from the fingertip
using a portable digital Lactate Pro meter (Lactate Pro2,
LT-1730, ARKRAY Factory Inc, Kyoto, Japan) and in the
last 30 s of each stage during the incremental load test.
Blood lactate concentration (BLa) was averaged over
every 1 min during the squat exercise. The LT was esti-
mated using the algorithm adjustment method [5] and
based on the procedure described by Orr et al. [22], as
work intensity at which lactate concentrations start to
increase in an exponential manner [23].

Knee joint angle

To determine the ascending and descending squat exer-
cise phases, knee joint angles were recorded using an
electronic goniometer (SG-150, Biometrics, Gwent, UK).
The goniometer was attached to the lateral side of the
thigh and lower leg with adhesive tape. Joint angle sig-
nals were recorded and stored via a 16-bit analog/digital
converter (PowerLab/16S, ADInstruments, Sydney,
Australia) on a personal computer at a sampling
frequency of 2 kHz.
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Electromyogram
During both maximal voluntary contraction (MVC) and
squat  tasks, surface electromyograms (EMGs)
(ME6000T, MEGA Electronics, Finland) with Ag-AgCl
electrodes (diameter 10 mm; interelectrode distance
20 mm) (N-00-S, Blue Sensor M, Ambu, Denmark) were
recorded from the vastus lateralis (VL), rectus femoris
(RF), vastus medialis (VM), biceps femoris (BF), and glu-
teus maximus (GM) muscles from the right leg. After
the skin surface was shaved, rubbed with sandpaper, and
cleaned with alcohol, the electrodes were attached to the
skin over the muscle belly to the direction of fascicles at
the same location between days, according to the
method reported by Tillin et al. [24]. The electrode loca-
tions were at 55% (VL), 50% (RF), 90% (VM), and 45%
(BF) of the distance between the greater trochanter and
the lateral femoral condyle. The location of each elec-
trode was marked on the skin surface with a permanent
maker. A ground electrode (preamplifer) was attached
near the two electrodes. EMG signals were collected at a
sampling frequency of 2 kHz and stored on a personal
computer. EMG signals and MVC torques is obtained
from the right side. To normalize muscular activity dur-
ing the squat task, the subject exerted MVC in each
muscle. For the MVC tasks, subjects gradually exerted
each torque from baseline to maximum and then
sustained at maximum for approximately 2 s. Subjects
performed two trials, with a 3-min interval between tri-
als. To determine maximal EMG amplitudes of the knee
extensors and flexors, subjects exerted knee extension
and flexion torques with a dynamometer (Biodex System
2; Biodex Medical Systems, NY, USA). Subjects were
fixed on an adjustable chair with hip and knee joints
flexed at 90°. To prevent the joint angle from changing
during the tasks, the trunk and hips were fixed using
non-elastic belts. To quantify maximal GM EMG ampli-
tude, subjects produced hip extension torque using a
custom-made device (AO-2T, Applied Office, Japan)
equipped with tension/compression load cells (LUR-A-
SA1, Kyowa, Japan). Subjects lay down prone on a bed
with their knee joint flexed at 90°. To prevent the joint
angle from changing during the task, the trunk and hips
were fixed by non-elastic belts. An additional trial was
conducted if the difference in the peak values between
the trials was more than 10%. The trial with the highest
peak force was adopted for further analysis. MVC
torques were normalized to body mass.
Root-mean-square (RMS) was calculated from the
EMG amplitudes of each muscle during the MVC and
squat tasks, using data analysis software (Chart version
7; ADInstruments, Australia). In the MVC task, the
RMS value (EMGypve) was determined over a 1-s win-
dow centered at the time at which peak torque was
attained (Fig. 1a). In the squat task, the RMS value was
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Fig. 1 Example data of the MVC task data for knee extension (a) and body mass-based squat exercise (b)
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determined over a 1-min window (Fig. 1b). The RMS
value during the squat task was normalized to EMGypyc
and expressed as a relative value (YEMGyryc).

In our preliminary study, seven young men performed
MVCs twice with an interval of 7 days to confirm the re-
producibility of MVC measurements. As the results,
intra-class correlation coefficients were >0.88 for MVC
torques, and 20.79 for EMG amplitudes during the
MVCs, satisfying a criteria for reproducibility of the
measurement (>0.75) [25].

Statistical analysis

Descriptive data are presented as means + SDs. Prior to
the experiment, we have estimated sample size based on
Cohen’s criteria (effect size, 0.40; an « level, 0.05; a
power (1-f), 0.95) [26] by using statistical software
(G*Power 3.1.9.2, Heinrich-Heine-Universitat Diissel-
dorf, Diisseldorf, Germany; http://www.gpower.hhu.de/).
The results revealed that at least nine subjects were ne-
cessary as the total sample size. Independent variables
were VO,, %VO,max, METs, VE, RQ, HR, %HRmax,
BLa, and %EMGyryc. Mauchly’s test of sphericity was
used to confirm variable homogeneity. To test for sig-
nificant time-related differences in these variables during
the body mass-based squat exercise, one way analysis of
variance (ANOVA) with repeated measures was used.
When appropriate, Bonferroni tests were used for post

hoc comparisons. In this study, we defined the condition
in which the measured variable did not significantly dif-
fer between adjacent time points as stable condition.
Pearson’s product-moment correlation coefficient (r) was
calculated for relationships between VO,max and each
of BLa and %VO,max during the squat task (4 to
9 min). BLa and %VO,max data averaged in stable
condition, respectively. Furthermore, we examined sig-
nificance of r on the relationships between %EMG ¢
of each muscle and MVC torque relative to body mass.
The %EMGyvc data averaged in stable condition in this
analysis. Statistical significance was set at p <0.05. All
data were analyzed using statistical software (SPSS statis-
tics 22; IBM, Tokyo, Japan).

Results

The mean values for cardiorespiratory and metabolic
parameters at LT during the incremental test were 2.3 +
0.5 mmol/L for BLa, 46.5+6.2% for %VO,max, and
65.8 + 4.8% for %HRmax (Table 1).

Cardiorespiratory response during body mass-based
squat exercise

VO,, %VO,max, and METs at 1 min from the exercise
onset were significantly lower than those at other exer-
cise time points, and significantly elevated until 4 min
(p <0.05). However, these variables did not significantly
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change after 5 min from the exercise onset (Fig. 2). The
average values from 5 to 9 min were 22.7 + 3.9 ml/kg/
min for VO,, 46.2 + 9.7% for %VO,max, and 6.5 + 1.1 for
METs. Time courses of VCO, and VE were similar to
those of VO, and %VO,max. The average values across
5-9 min were 1.6 +0.4 L/min for VCO, and 35.0 +
8.8 L/min for VE. RQ significantly increased until the
second time point (p < 0.05), but did not change from 3
to 9 min (1.1 +0.1).

Time courses of HR and %HRmax during body mass-
based squat exercise are presented in Fig. 3. HR and
%HRmax at 1 min from the exercise onset were signifi-
cantly lower than those at other exercise time points,
and significantly elevated until 6 min (p < 0.05). In these
variables, however, there were no significant differences
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Fig. 2 Oxygen uptake (VO,; a), percent maximal oxygen uptake
(%VO,max; b) and metabolic equivalent (METSs; ¢) during body
mass-based squat exercise
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Fig. 3 Heart rate (HR) and HR relative to HRmax (%HRmax) during
body mass-based squat exercise

in any combination across exercise time points during a
duration from 7 to 9 min. The average values from 7 to
9 min were 131.1 + 17.1 bpm and 71.2 + 9.0%HRmax, re-
spectively. %VO,max during the squat exercise across
5-9 min time points was negatively related to VO,max
(r=-0.561, p < 0.05). The relationship between %HRmax
during the squat exercise across 7-9 min time points
and VO,max was not significant.

BLa during body mass-based squat exercise

BLa was the lowest at 1 min during the exercise (Fig. 4,
p<0.05). BLa values at 2 and 3 min were lower than
those at 5, 8, and 9 min (p <0.05), respectively. There
was no significant increase in BLa after 3 min from the
exercise onset. The average value across 3-9 min was
3.6 £ 2.2 mmol/L. BLa during the body mass-based squat
exercise across 3-9 min time points was negatively
related to VO,max (r=-0.582, p < 0.05).

%EMGyc during body mass-based squat exercise

Time courses of %EMGyyc during body mass-based
squat exercise are presented in Fig. 5. The %EMGypyc of
VL, RE, VM, BE, and GM at 1 min from the exercise on-
set were significantly lower as compared to those at
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Fig. 4 Blood lactate concentration (BLa) during body mass-based
squat exercise

other exercise time points. These variables had no sig-
nificant differences in any combination across exercise
time points during a duration between 6 and 9 min. The
%EMGvc of VL (45.0 £ 17.9%EMGyc) and BF (6.3 £
3.7%EMGyrvc) is significantly higher after 6 min from
exercise onset compared to those values across 1-5 min
(40.6 £ 18.0%EMGyvc for VL and 5.3 + 3.2%EMGyvc
for BF). The %EMGypnc values for RF, VM, and GM
(31.4 £ 15.0%EMGyvc for RE, 39.6 + 17.3%EMGyyc for
VM, 9.3 + 4.1%EMGyc for GM) were higher than those
at 1-5 min (28.7 £ 134%EMGyyc for RF, 34.8 %
16.2%EMGyvc for VM, 8.4 +4.0% for GM), respectively.
The %EMGyc of each muscle was not significantly
related to the cardiorespiratory parameters during the
squat exercise. The %EMGyryc for VL during the body
mass-based squat exercise was negatively related to
knee extension torque relative to body mass (KET/
BM) (r=-0.627, p<0.05). For RF and VM, the
corresponding relationships were not significant (r = -0.175-
0.268, n.s.).

Discussion

The main findings of this study were that (1) cardiore-
spiratory and BLa significantly increased until 4 min
from the start of body mass-based exercise, but did not
further change after 5 min and (2) %VO,max and BLa
during the squat exercise were negatively correlated with
VO,max. These findings indicate that body mass-based
squat exercise is conducted predominantly using an aer-
obic energy supply after 5 min from the start of the
exercise, and that the magnitude of aerobic and anaer-
obic metabolisms during the exercise depends on an
individual’s maximal aerobic power.
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VO,max, VE, and BLa during the squat exercise did
not significantly change after 5 min from exercise onset.
Respiratory response is related to increases in metabolic
products such as carbon dioxide and blood lactate in
active muscle [27, 28] These metabolic products stimu-
late peripheral and central chemoreceptors and occurs
ventilatory facilitation [27]. Considering earlier findings,
the lack of significant changes in VO,max and VE after
5 min from exercise onset may be due to the fact that
BLa did not change over the corresponding periods. Fur-
thermore, low or moderate effort exercise can be main-
tained for a relatively long time, because blood lactate
concentration is an equilibrium between rate of lactate
appearance into and disappearance from the blood
during exercises [9, 10], indicating that energy for the
exercise is supplied largely via aerobic metabolism [29].

Oxygen uptake averaged across 5-9 min from exercise
onset was 22.7 +3.9 ml/kg/min (46.2%VO,max). This
value is equivalent to that for squat exercise at LT inten-
sity (25 ml/kg/min) [8]. Furthermore, %VO,max at LT
during the incremental loaded bicycle test was 46.5 +
6.2%, being similar to that obtained during the body
mass-based squat exercise. The VO, during the body
mass-based squat exercise (22.7 £3.9 ml/kg/min) was
similar to another value obtained during half squat exer-
cise with a load of approximately 30%1RM (18.3 ml/kg/
min) [5]. This indicates that cardiorespiratory response
to the body mass-based squat exercise is similar to that
for squat exercise with an LT intensity external load.
METs during the body-mass based squat exercise was
6.5+ 1.1, corresponding to moderate aerobic exercise
such as jogging and moderate aerobic dancing [30].
Taken together, we may say that, from the viewpoint of
cardiorespiratory response, body mass-based squat exer-
cise becomes a moderate intensity task when it is
continued for at least for 5 min.

%VO,max and BLa during the body mass-based squat
exercise were both significantly related to VO,max. This
result indicates that oxygen uptake and metabolic
response during the squat exercise may depend on max-
imal aerobic power. In other words, these current results
imply that a person with higher VO,max can conduct
body mass-based squat exercise with relative low physio-
logical load. Higher aerobic power may be attributed to
greater mitochondrial numbers, greater mitochondrial
density, and higher oxidation ability in active muscle
[31]. In the present results, however, the VO, during the
squat exercise was not significantly related to VO,max
(r=0.010,p =0.970). This implies that the absolute
oxygen uptake during the exercise is almost the same
regardless of the magnitude of VO,max.

The mean value of %EMGyryc during the squat exer-
cise was 40.6% for VL, 28.7% for RF, 34.8% for VM, 5.3%
for BF, and 8.4% for GM. These values are equivalent to
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those reported by Isear et al. [15] who examined EMG
activities during body mass-based squat exercise
(33.1%EMGyp v for VL, 40.0%EMGyvc for RF, and
10.8%EMGyvc for GM). In the present study, the
%EMGyyc during the squat exercise significantly in-
creased after 6 min from exercise onset. Because oxygen
uptake is positively related to integrated EMG activity
during an incremental loaded bicycle test [32], increases
in integrated EMG, being derived from the number of
action potentials and contracting muscle fibers [33], may
be associated with elevated oxygen uptake during exer-
cises. However, in the present results, the %EMGyyc
during the squat exercise increased in the later stages of
the exercise, whereas oxygen uptake did not significantly

shift after 5 min in this study. This might be due to the
degree of increases in muscular activities during the ex-
ercise. In fact, the differences between the values aver-
aged after 6 min and the values averaged over 1-5 min
were 3.5-7.6%EMGyryc for each muscle, indicating rela-
tively small.

The EMGyrvc for VL during body mass-based squat
exercise was significantly related to KET/BM. This result
supports our previous findings that the muscular activity
levels of lower limb muscles during body mass-based ex-
ercises are negatively related to knee extension torque
relative to body mass [11, 34]. This implies that relative
effort during body mass-based squat exercise is greater
in a person with low force-generating capacity than one
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with high force-generating capacity. Considering that in-
crease in relative load during the incremental loaded bi-
cycle test linearly elevates oxygen uptake and integrated
EMG activity [32], %VO,max would be expected to de-
pend on the muscular activity level during the squat ex-
ercise. However, the corresponding relationships were
not significant in this study. Therefore, at least in young
men, cardiorespiratory responses during body mass-
based squat exercise may be independent of the muscu-
lar activity level of the knee extensors.

Because the design of this study was cross-sectional
study, it is unclear whether body mass-based squat exer-
cise training improves systemic and local endurance cap-
acities. Miyamoto et al. [2] revealed that a 4-week
intervention with low-intensity electrical muscle stimu-
lation during knee extension exercises, corresponding to
3-4 METs, enhanced oxygen uptake during cycle erg-
ometer. In the present study, METs during the body
mass-based squat exercise reached 6.5+ 1.1, and mainly
activated the knee extensors. Body mass-based squat ex-
ercise may be one feasible approach for improving sys-
temic and local endurance capacity when it is performed
continuously at least for 5 min.

Conclusions

From the viewpoint of cardiorespiratory and metabolic
responses, body mass-based squat exercise is moderate
intensity and is performed via aerobic metabolism after
5 min from exercise onset. Furthermore, the relative in-
tensity of the squat exercise partially depends on the in-
dividual’s aerobic maximal power.
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