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The association of insertions/deletions
(INDELs) and variable number tandem
repeats (VNTRs) with obesity and its related
traits and complications
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Abstract

Background: Despite the fact that insertions/deletions (INDELs) are the second most common type of genetic
variations and variable number tandem repeats (VNTRs) represent a large portion of the human genome, they have
received far less attention than single nucleotide polymorphisms (SNPs) and larger forms of structural variation like
copy number variations (CNVs), especially in genome-wide association studies (GWAS) of complex diseases like
polygenic obesity. This is exemplified by the vast amount of review papers on the role of SNPs and CNVs in obesity,
its related traits (like anthropometric measurements, biochemical variables, and eating behavior), and its related
complications (like hypertension, hypertriglyceridemia, hypercholesterolemia, and insulin resistance—collectively
known as metabolic syndrome). Hence, this paper reviews the types of INDELs and VNTRs that have been studied
for association with obesity and its related traits and complications.

Main body of the abstract: These INDELs and VNTRs could be found in the obesity loci or genes from the earliest
GWAS and candidate gene association studies, like FTO, genes in the leptin–proopiomelanocortin pathway, and UCP2/3.
Given the important role of the brain serotonergic and dopaminergic reward system in obesity susceptibility, the
association of INDELs and VNTRs in these neurotransmitters’ metabolism and transport genes with obesity is also
reviewed. Next, the role of INS VNTR in obesity and its related traits is questionable, since recent large-scale
studies failed to replicate the earlier positive associations. As obesity results in chronic low-grade inflammation
of the adipose tissue, the proinflammatory cytokine gene IL1RA and anti-inflammatory cytokine gene IL4 have
VNTRs that are implicated in obesity. A systemic proinflammatory state in combination with activation of the
renin–angiotensin system and decreased nitric oxide bioavailability as found in obesity leads to endothelial dysfunction.
This explains why VNTR and INDEL in eNOS and ACE, respectively, could be predisposing factors of obesity. Finally, two
novel genes, DOCK5 and PER3, which are involved in the regulation of the Akt/MAPK pathway and circadian rhythm,
respectively, have VNTRs and INDEL that might be associated with obesity.

Short conclusion: In conclusion, INDELs and VNTRs could have important functional consequences in the
pathophysiology of obesity, and research on them should be continued to facilitate obesity prediction,
prevention, and treatment.
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Background
Obesity and its genetic factors
The worldwide prevalence of overweight and obesity,
which rose by 27.5% in adults and 47.1% in children
between 1980 and 2013 [1], has been described as a
global pandemic. Obesity, defined as abnormal or exces-
sive fat accumulation that presents a risk to health, is
associated with increased morbidity and mortality re-
lated to several conditions such as type 2 diabetes (T2D)
and cardiovascular disease [2]. While obesity is mainly
caused by environmental factors such as dietary habits
and physical activity, it still has a strong genetic compo-
nent. Family, twin, and adoption studies indicate that
genetics account for 20–84% of population variation in
body mass index (BMI) [3, 4], the most commonly used
anthropometric measurement of adiposity apart from
direct body fat content imaging techniques. Other an-
thropometric measurements such as waist circumference
(WC) and waist–hip ratio (WHR) are more correlated
with abdominal fat deposition (central adiposity) than
BMI and are considered strong risk factors for T2D [5].
The study of genetic factors involved in body weight

regulation in humans heavily extrapolated from studies
on rodent monogenic obesity models in the 1990s.
Monogenic obesity is a rare form of severe obesity that
results from gene mutations that have large effect sizes.
By screening children with severe, young-onset obesity
for the genetic defects identified in mice, loss-of-
function (LOF) mutations causing deficiencies are found
in genes encoding for appetite-regulating hormones or
their receptors such as leptin (LEP) [6], leptin receptor
(LEPR) [7], proopiomelanocortin (POMC) [8], and mela-
nocortin 4 receptor (MC4R) [9]. As these LOF variants
are only found in monogenic obesity, they are uncom-
mon in the general population. Therefore, various gen-
etic approaches like candidate gene association studies
and genome-wide linkage studies have been performed
to identify susceptibility genetic loci for common poly-
genic obesity instead in the early 2000s. However, these
approaches have been met with little success as the
genes or loci found to be associated with obesity vary
heavily across ethnic populations and are therefore diffi-
cult to replicate due to several reasons as reviewed in [10].
Fortunately, after the completion of the Human Gen-

ome Project in 2003 [11] and the International HapMap
Project (Phase I) in 2005 [12] in conjunction with the
development of high-throughput genotyping techniques
as well as bioinformatics and statistical methods, various
obesity genome-wide association studies (GWAS) were
conducted from 2006 [13]. In GWAS, thousands of
genetic variants are genotyped on a single microarray
technology for association with obesity and its related
traits and complications [14]. In the recent decade, nu-
merous GWAS among Caucasians (like the Genetic

Investigation of Anthropometric Traits (GIANT) con-
sortium) [15], East Asians, and Africans, each analyzing
>50,000 individual subjects, have identified >90 loci for
obesity (reviewed in [16]).

The potential of INDELs and VNTRs in obesity
Genetic variations in the human genome present as (i)
single nucleotide polymorphisms (SNPs), (ii) insertions/
deletions (INDELs) ranging from 1 to 10,000 bp in
length [17], and (iii) structural variations that account
for a greater number of base pairs. An example of struc-
tural variation is variable number tandem repeat
(VNTR), which is a DNA sequence motif that is re-
peated several times in the genome continuously and
constitutes Mendelian inheritance (reviewed in [18, 19]).
VNTRs cover both microsatellites or short tandem re-
peat (STR) (1–6-bp-long motifs) [20] and minisatellites
(hundreds of base pairs block motifs) [21, 22]. The num-
ber of times the sequence is repeated differs within and
between individuals. The highly polymorphic nature of
VNTRs makes them very informative as a class of markers
to map for disease loci in family linkage studies [18].
SNPs are the most common type of genetic variations

found in the human genome, and a substantial amount
of research, such as that by the International HapMap
Project, has been focused on accurately mapping and
identifying them [23]. In spite of being the second most
common type of genetic variations and constituting a
large portion of the human genome [24], INDELs and
VNTRs are more challenging to identify compared to
SNPs, due to library preparation, sequencing biases, and
algorithm artifact issues (reviewed in [25, 26]). Due to
the nature of INDELs and VNTRs, genotyping them on
the array platforms that SNP genotyping utilizes has led
to technical problems like complications in scoring the
number of repeats present. Unlike the vast amount of
reviews available in the literature on the association of
SNPs and larger forms of structural variation like copy
number variations (CNVs) with obesity and its related
traits (like anthropometric measurements, biochemical
variables, and eating behavior) and its related complica-
tions (like hypertension, hypertriglyceridemia, hyperchol-
esterolemia, and insulin resistance—collectively known as
metabolic syndrome), INDELs and VNTRs have received
far less coverage and attention. In fact, INDELs and
VNTRs could have important functional consequences
by regulating gene transcription and messenger RNA
(mRNA) translation or by modifying the structure of
proteins. In addition, since INDELs and VNTRs have
greater potential for mutations than SNPs, they may
also have an important role to play in the evolution of
specific higher organism traits, such as behavior [27].
Using examples from the literature, this review high-
lights the functional consequences of INDELs and
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VNTRs in the human genome and their association
with obesity and related traits. With the advent of faster
and cheaper next-generation genome and exome sequen-
cing, paired with the rise of the software availability for
genome-wide detection of INDELs (like indelMINER [28])
and VNTRs (like VNTRseek [29]), it is hoped that associ-
ation and functional characterization studies between
INDELs/VNTRs and obesity should be continued and not
neglected.

Main text
INDELs and VNTRs in obesity genes from the earliest
GWAS and candidate gene studies
Numerous INDELs and VNTRs are located around
obesity-susceptible genes or loci identified by the earliest
GWAS and candidate gene studies. These mainly include
genes that are involved in energy balance, appetite regula-
tion, and adipogenesis, i.e., fat mass and obesity-associated
protein gene (FTO), and genes in the leptin–proopiomela-
nocortin pathway and uncoupling protein families. It is
possible that the association between INDELs/VNTRs
and obesity is affected by the obesity-related SNPs because
of strong linkage disequilibrium, and the risk or protective
variants of INDELs/VNTRs are linked to the counterparts
of the focal SNPs.

Fat mass and obesity-associated protein gene (FTO)
Genetic variants of FTO were the first common genetic
variants to be associated with increased obesity and BMI
[30], with 89 genetic variants in introns 1 and 2 that
have the strongest genome-wide association signal and
are in high linkage disequilibrium in Europeans [30–32].
This association was replicated in several distinct ethnic
populations (reviewed in [33]), making FTO the single
strongest genetic factor of obesity. Most studies have fo-
cused on variants of a 42-kb haplotype block around the
lead SNP rs9939609 in the first intron, and recently, a
causal variant rs142108 resulting in cellular phenotypes
consistent with obesity, like increased triglyceride accu-
mulation and decreased mitochondrial energy gener-
ation, has been identified [34]. FTO is a very large gene
containing nine exons, spanning 412 kb. However, only
a few studies have identified obesity-associated SNPs in
other regions of the gene, in introns 2, 3 [35], and 8
[36]. By using massive parallel sequencing to sequence
the entire length of FTO, Sällman Almén et al. identified
13 insertions and 27 deletions that range between 1 and
9 bp, of which 16 overlap known INDELs in dbSNP and
24 are potential novel INDELs [37]. Three insertions
(minor allele frequency < 5%) reside within the obesity-
associated haplotype of intron 1. However, none of these
INDELs contributed to obesity association [37].

Leptin gene (LEP)
The discovery that the mouse obesity phenotype ob has
been attributed to mutations in the mouse leptin gene
[38], and that mutations in the human homolog (LEP)
cause early-onset monogenic obesity in humans [6, 39],
has led to significant progress in understanding the eti-
ology of obesity. Analysis of the leptin–proopiomelano-
cortin (LEP–POMC) pathway has revealed the role of
the pathway in hypothalamic control of feeding behavior
and energy balance [40, 41]. A GWAS which identified
14 known obesity susceptibility variants and 18 new loci
that were associated with BMI found that some of these
loci are mapped at the LEP–POMC pathway, i.e., LEP
and its receptor LEPR, POMC and MC4R [42].
While mutations in LEP cause monogenic obesity,

there have been numerous research in determining
whether genetic variations in or near LEP influences sus-
ceptibility to polygenic obesity. Using STR markers
flanking the LEP locus at human chromosome 7q31.3-
32.1, several groups reported evidence of linkage and/or
association between these STRs and obesity-related
traits, albeit with inconsistencies [43–47]. A meta-
analysis of the linkage data concluded that the evidence
of a gene influencing obesity in the region of the LEP
locus was extremely strong [48]. A tetranucleotide
VNTR, (CTTT)n, was first identified at 3912 bp 3′ of
the LEP stop codon (476 bp 3′ of the 3′ UTR) [49]. Fif-
teen alleles were detected in this VNTR and were
grouped into shorter class I alleles (121–145 bp) and
longer class II alleles (197–225 bp); however, they were
not significantly associated with obesity and T2D [49].
Nevertheless, the same group subsequently found a sig-
nificant association between class I/class I genotype and
hypertension, independent of obesity [50]. In another
study among populations worldwide, Moffett et al.
grouped this VNTR into three general classes—type 1
alleles (146–178 bp), type 2 alleles (165–193 bp), and
type 3 alleles (210–254 bp), but they did not investigate
the association with obesity or related traits [51]. In the
Brazilian population, this VNTR was significantly associ-
ated with obesity-related traits and leptinemia, where
the frequency of class I alleles was significantly higher in
obese than in nonobese [52, 53]. The risk for obesity
was two times higher in class I allele carriers; class I
allele was associated with increased BMI and WC, and
plasma leptin in women [52]. In combination with LEP
-2548GG SNP, LEP VNTR/SNP class I/G combined ge-
notypes (I/IGG, I/IGA, and I/IIGG) were significantly
associated with obesity and increased BMI, WC, leptin,
and triglycerides in women [53]. However, Nauruan
(Pacific Islander) men homozygous for class II allele,
along with homozygosity in the two other LEPR
Gln223Arg and PRO1019pro SNPs, had elevated insulin
[54]. A long-base-pair allele (class II in [49])—allele
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226—of this VNTR was also associated with lower BMI
in adult Samoans [55].

Leptin receptor gene (LEPR)
LEPR, located near the STR D1S200, has been associated
with increased BMI and fat mass [56]. The LEPR
D1S200 17 allele was associated with increased suscepti-
bility to obesity and increased BMI, WC, and WHR in
Brazilian individuals [57]. Other STRs flanking LEPR by
approximately 9 and 3 cM, such as D1S3728 and
D1S1665, were proposed to contribute to plasma leptin
concentrations, adiposity, and body weight in individuals
with dyslipidemia [58]. Two VNTRs located at introns 3,
(CA)n, and 16, (CTTT)n, of LEPR were shown to be
associated, respectively, with BMI and fat-free mass in
the Quebec Family Study [59]. A common CTTTA-
pentanucleotide 3′ UTR INDEL in LEPR was associated
with increased body weight in patients in the Finnish
Diabetes Prevention Study [60], while another novel
TAT-trinucleotide INDEL variant in the 1078Y codon of
LEPR (containing a putative phosphorylation site) was
not associated with obesity in Dutch Caucasians [61].

Proopiomelanocortin gene (POMC)
A genome-wide scan found that D2S1788 GATA-
tetranucleotide VNTR near POMC had strong linkage
with serum leptin levels and fat mass in Mexican Ameri-
cans [62, 63]. This VNTR was also associated with
plasma leptin levels in French [64], African-American
[65], and Hispanic populations [66], but not in Brazilians
[57]. This VNTR has also been associated with BMI in
the Framingham Heart Study families [67]. However, this
VNTR together with four others near POMC—D2S2170,
D2S144, D2S1268, and D2S1348—showed no association
with obesity in Samoans [55]. Out of three VNTRs
(D2S2221, D2S171, D2S2337) screened for association
with obesity and related traits in French Caucasian
families, only D2S2337 had linkage with serum leptin
levels [68]. Lastly, a cryptic trinucleotide repeat (9-bp)
INDEL detected in exon 3 of POMC (codon 94) [69]
was associated with elevated serum leptin levels in
Swedish [70] and Danish [71] men. However, this INDEL
was not associated with salivary cortisol [72], obesity,
and related traits [63, 71].

Melanocortin 4 receptor gene (MC4R)
Like FTO, MC4R has been extensively studied in obesity
research. To date, more than 160 mutations in MC4R,
mostly heterozygous (codominant inheritance), were
identified mainly in obese individuals, encompassing
nonsynonymous, nonsense, deletion, and frameshift mu-
tations. Therefore, MC4R is the most commonly known
monogenic cause of human obesity (reviewed in [73,
74]). In 1998, two groups reported the first functionally

relevant MC4R mutations for obesity [75, 76]. Yeo et al.
identified a hyperphagic individual who was heterozy-
gous for a deletion of 4 bp at codon 211, resulting in a
frameshift mutation which leads to a premature stop
codon [75]. Another frameshift mutation (4-bp insertion
after codon 244) was detected in a woman with early-
onset obesity, whose family members who carried the
same mutation were obese whereas the noncarriers were
not obese [76]. The first mutation analysis in 306 obese
individuals further confirmed the role of MC4R in
obesity [77]. As the focus of this review is on common
polygenic obesity, the examples of INDELs in MC4R
which lead to rare monogenic obesity will not be further
discussed here. The association of MC4R SNPs with
polygenic obesity will also not be further discussed here.
Nevertheless, recent GWAS have identified SNPs in the
MC4R 3′ UTR region to have a strong association with
obesity, with rs17782313 showing the second strongest
association signal after FTO [78] and rs129070134
showing association not just in Caucasian populations
but also in Asian populations [79, 80].
Eight STRs flanking the MC4R gene—D18S851,

D18S487, D18S69, D18S858, D18S849, D18S1155,
D18S64, D18S38—have demonstrated linkage with
obesity in Finnish sib pairs, with D18S849 showing the
strongest linkage [81]. The D18S858 11/12 allele was
also associated with increased BMI and WC in Brazilian
subjects [57]. This locus was also found to be related to
other obesity-related complications, like systolic BP
(SBP) [82] and cancer [83].

Uncoupling protein 2 and 3 genes (UCP2 and UCP3)
Uncoupling proteins (UCPs) are mitochondrial trans-
porters that mediate energy homeostasis and thermo-
genesis. Genetic variants in the UCP2/UCP3 cluster
have been considered candidate markers for obesity,
diabetes, and fat metabolism in humans [84]. D11S912
and other STRs flanking UCP2 and UCP3 showed some
evidence of linkage with obesity and BMI [4, 81]. The 43
allele of D11S912 STR was associated with increased risk
for obesity in Brazilians [57], consistent with a genome-
wide linkage scan study in the Framingham Heart Study
families [4]. Campbell et al. reported allelic association
between D11S911 and anorexia nervosa (AN) and hy-
pothesized that this may reflect differences in metabolic
rate between patients with AN and controls [85]. How-
ever, other studies found that other STRs flanking
UCP2–UCP3 are unlikely to have a substantial effect on
the expression of obesity-related phenotypes in Mexican
American [86] and Caucasian [87] populations.
A 45-bp INDEL variant in the 3′ UTR of UCP2 exon

8 (reviewed in [88]) has been variably associated with
altered BMI, changes in energy expenditure, and main-
tenance of body weight after overfeeding [89, 90].
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Previous studies showed that carriers of the I (insertion)
allele had significantly higher risk of developing obesity
and BMI compared to the D (deletion) allele [88, 91–94].
In our study, we found that this INDEL was associated
with obesity and overall adiposity among females [95].
However, when adjusted for age and ethnicity, this associ-
ation was abolished for obesity but remained significant
for overall adiposity; those carrying the ID genotype or I
allele had almost twofold risk of having higher overall adi-
posity and had higher total body fat (TBF) compared to
the D allele [95]. Similarly, Yanowski et al. also found that
TBF was significantly associated and greater in ID subjects
compared to II subjects [96], while WHR was not signifi-
cantly different in Caucasians, African-Americans, and
Asians [96]. Also, no association between this INDEL and
WC and waist-to-thigh ratio was found among Pima
Indians [97].

INDELs and VNTRs in serotonergic and dopaminergic
system genes
Given the important role of the brain serotonergic and
dopaminergic reward system in weight gain and obesity
susceptibility, investigation of the candidate genes of
these neurotransmitters’ metabolism and transport is a
growing area of research [98, 99].

5-Hydroxytryptamine (serotonin) transporter gene
(SLC6A4/5HTT)
The serotonin transporter protein (SERT or 5-HTT),
which is encoded by SLC6A4, recycles serotonin (5-HT)
after an action potential and regulates the availability of
serotonin at the synaptic cleft [100]. Since its description
in 1993, SLC6A4 has been a candidate gene for a variety
of neuropsychiatric conditions, given the importance of
serotonergic function in mood and the widespread clinical
use of selective serotonin reuptake inhibitors (SSRIs) as
anxiolytics and antidepressants [100]. In addition to SNPs,
two polymorphic regions influencing the transcription ac-
tivity of SLC6A4 have been studied extensively in search
of association with a range of neuropsychiatric phenotypes
(reviewed in [101]). The serotonin transporter-linked
polymorphic region (5-HTTLPR) is located 1 kb upstream
of the transcription start site and consists of a number of
20–23-bp repeat units varying from 13 to 22 units. Within
the 5-HTTLPR, a 43-bp INDEL gives rise to the most
common repeat elements 14R (short, S) and 16R (long, L)
alleles [102]. The second 5-HTT polymorphic region is a
multi-allelic 17-bp VNTR in intron 2 (named STin2) with
two common alleles with 10 and 12 repeats and a rare
allele with 9 repeats [103, 104].
A study with Argentinean children/adolescents dem-

onstrated that individuals with the 5-HTTLPR S allele
were found to be at greater risk of being overweight/
obese as result of a genetic predisposition that leads to

higher food consumption [105]. Another study with
young American adults obtained similar results, whereby
the prevalence of obesity combined with overweight was
significantly lower among L allele carriers compared
with individuals homozygous for the S allele [98]. In the
same direction, Markus and Capello found that S allele
carriers had significantly higher BMI than LS and LL
carriers in highly neurotic individuals, indicating that
cognitive stress vulnerabilities may be a mediator of the
association between 5-HTTLPR and BMI [106]. In a fur-
ther study by the same group, they found that SS homo-
zygotes undergoing stress vulnerability tend to increase
the appetite for sweets because sweet foods might have
become more emotionally rewarding in these subjects
[107]. Furthermore, Lan et al. described an age-dependent
modification of 5-HTTLPR association with obesity devel-
opment; they demonstrated that the SS genotype was as-
sociated with BMI and obesity in nonelderly patients with
stroke but not in elderly patients [108]. Recently, it was
found that Brazilian children with SS homozygotes also
had higher anthropometric parameters (BMI Z-score, sum
of skinfolds, and WC) and higher food intake at the as-
sessments of the three stages in early childhood [109]. The
S allele was also strongly associated with the presence of
T2D in Greeks independent of obesity status [110], but no
association with T2D and obesity was found in the
Pakistani population [111].
On the other hand, Bah et al. showed different results

[112]. They showed that SS tended to be more frequent
in underweight subjects, and this association was signifi-
cant only in Swedish men. However, there was no sig-
nificant association between 5-HTTLPR and BMI [112].
Borkowska et al. detected association of the S allele with
development of depressive temperament while the L al-
lele was associated with greater obesity and prevalence
of depression in Polish adults [113]. There was no sig-
nificant association observed between 5-HTTLPR and
BMI status in Turkish studies [114, 115].
The first study which investigated the association be-

tween STin2 VNTR and obesity found no significant ef-
fect on obesity in Turkish adults [115]. However, when
combined with 5-HTTLPR, the L/10 allele haplotype
showed a significant association with overweight/obesity
in Portuguese adults [116]. Moreover, in inactive indi-
viduals, overweight/obesity was found nominally asso-
ciated with the STin2 10 allele but significantly
associated with the 5-HTTLPR L allele [116].

Dopamine transporter gene (SLC6A3/DAT1)
The dopamine transporter (DAT1), encoded by SLC6A3/
DAT1, is a membrane-spanning protein which termi-
nates the synaptic transmission of dopamine by reuptake
into the presynaptic nerve terminals [117]. The human
DAT1 contains a VNTR in its 3′ UTR, consisting of
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repetitions of a 40-bp core sequence [118]. This VNTR
varies between 3 and 13 repeats, of which the common
10-repeat (long; L) allele was associated with an in-
creased expression of the transporter, leading to greater
dopamine (DA) reuptake and lower synaptic levels of
DA [119]. The 9-repeat (short; S) allele also has greater
DA signaling in the reward circuitry than the L allele
[119]. The likelihood of obesity in African-American
smokers with the LL genotype was 5.16 times compared
with the SS or SL genotypes [120]. This VNTR was also
associated with future weight gain; S allele carriers
showed greater increases in BMI than L allele carriers
[121]. However, in a Turkish study, no effect of this
VNTR on obesity was observed [115].
More literature reported on the association between

this VNTR and eating behavior. It was found that there
was an association between this VNTR and binge eating
behavior [122], suggesting that dysregulation of dopa-
mine reuptake may act as a common pathophysio-
logical mechanism in eating disorders. It was found
that smokers homozygous for the L allele and who had
high food reinforcement levels consumed more energy
than those with the S allele or who had low food
reinforcement levels [123]. However, this finding could
not be generalized to nonsmokers as the subjects were
regular smokers. To circumvent this, a study conducted
by the same group in a larger sample of nonsmokers
did not find any significant association between this
VNTR and energy intake or between VNTR and food
reinforcement [124]. Results also supported the role of
DAT1 in regulating appetitive response to methylphen-
idate, a psychomotor stimulant. Subjects with binge
eating disorders with at least one S allele showed a sig-
nificant suppression of appetite in response to methyl-
phenidate, compared with controls with this allele or to
subjects with the LL genotype [125].

Dopamine receptor D2 gene (DRD2)
Obese subjects, relative to lean ones, have reduced D2
receptors (DRD2) in the striatum [126], due to de-
creased metabolism in prefrontal cortical regions [127].
An inverse relationship between BMI and DRD2 has also
been described; specifically, those individuals with the
lowest DRD2 brain density had the largest BMI [126]. In
a single study examining the association between DRD2-
141C INDEL and future weight gain, there was no asso-
ciation found between this INDEL and change in BMI
over a 2-year follow-up [121]. Other studies tend to in-
vestigate the association of another genetic variant that
modulates the density of DRD2—DRD2/ANKK1-TaqIA
SNP—with both obesity [126] and addictive disorders
[128, 129] instead, which is out of the scope of this
review.

Dopamine receptor D4 gene (DRD4)
Another gene encoding dopamine receptors is DRD4,
which is highly expressed in the prefrontal cortex and
other brain regions that are involved in the reward cir-
cuits that mediate the reinforcing properties of food,
such as the amygdala, hippocampus, and hypothalamus
[130, 131]. This gene contains a highly polymorphic 48-
bp VNTR within exon 3, which is located in the third
cytoplasmic loop of the receptor [132]. Nine alleles of
this VNTR have been identified worldwide, with the
number of repeats ranging from 2 to 10; 4-repeat (4R; S)
and 7-repeat (7R; L) alleles are the most common [133].
This VNTR has been hypothesized to affect the trans-
mitted signal in the postsynaptic neuron. Individuals
with at least one ≥7R allele showed reduced binding af-
finities and receptor densities for dopamine neurotrans-
mission [134]. This VNTR has also been associated with
increased food intake in patients treated with DRD4-
related antipsychotics [135], and with addictive behaviors
[136]. In some studies, DRD4 VNTR and higher BMI
correlation was shown [137, 138]. The S allele was also
associated with increases in BMI over a 2-year follow-up
period [121].
DRD4 VNTR also influences BMI and body composi-

tion in the context of other environmental factors. For
example, 7R allele/season-of-birth interactions increase
the risk for obesity in women with either seasonal
affective disorder [139] or bulimia nervosa [140]. A
study of Kenyan Ariaal men found that BMI was higher
in those with one or two 7R alleles in the nomadic
population, but lower among the settled, due primarily
to differences in fat-free body mass [141]. Children who
carried the 7R allele also appeared to be more influenced
by maternal sensitivity (response to a child’s emotional
signals) as it relates to overweight/obesity risk [142].
However, there was no association between this VNTR
alleles with AN, underweight, or extreme early-onset
obesity [143]. Similarly, no association was detected
between alleles/genotypes and BMI, BMI-SDS, or skin-
fold thickness at baseline nor success in the weight loss
intervention in obese German children [144]. Similarly,
there was no association found with obesity in Turkish
adults [115]. There was also no association found
between level of physical activity and sedentary lifestyle
in Polish adults [145].

Monoamine oxidase A gene (MAOA)
Monoamine oxidase (MAO) is an outer membrane
mitochondrial enzyme that catalyzes the turnover of
several catecholamine neurotransmitters, namely sero-
tonin, noradrenaline, and dopamine [146]. MAOA, an
isoenzyme of MAO, is encoded by MAOA located on
the short arm of the X chromosome between bands
Xp11.23 and Xp11.4 [147]. It contains a 30-bp VNTR

Say Journal of Physiological Anthropology  (2017) 36:25 Page 6 of 17



located at the promoter region, manifesting as six func-
tional allele variants containing either 2-, 3-, 3.5-, 4-, 5-,
or 6-repeat copies [146], with the 3- (3R) and 4-repeat
(4R) alleles being the most common [148]. Certain al-
leles may confer lower transcriptional efficiency than
others; the 3R allele conveys lower efficiency, the 3.5-re-
peat and 4R alleles result in higher efficiency [146, 149],
while to date, there is less consensus regarding the tran-
scriptional efficiency of the other less commonly occur-
ring alleles (i.e., 2-, 5-, and 6-repeat). The primary role
of MAOA in regulating catecholamine turnover and
hence ultimately influencing their levels indicates that its
VNTR is a highly plausible candidate for affecting indi-
vidual differences in physiological and psychological
traits, such as obesity, personality traits, and alcoholism
risk [150]. A previous study showed a significant associ-
ation of MAOA VNTR alleles (either alone or with com-
bination of other gene variants) with weight and BMI in
Caucasian populations [98, 151–153], while our unpub-
lished study showed association only with weight; both
studies agree that subjects having the lower activity 3R
allele tend to have a lower weight than the higher activ-
ity 4R allele. Meanwhile, another study showed a signifi-
cant association of this VNTR with obesity in a mixed-
ethnic American population [154], while Dias et al. [116]
and our unpublished studies showed otherwise. In a pre-
vious study, Brazilian boys who carried the 4R allele
were associated with higher intake of lipid- and sugar-
dense foods [155]. The increased intake of lipid- and
sugar-dense foods might have led to increased lipid
accumulation in adipose tissues, leading to higher TBF
and SF in 4R allele carriers, as shown in our unpublished
study. However, a previous study showed that Portuguese
men with the 3R3R genotype had significantly higher
TBF [116].

Tyrosine hydroxylase gene (TH)
Tyrosine hydroxylase (TH) is a rate-limiting enzyme in
adrenaline, noradrenaline, and dopamine synthesis, and
its coding gene, TH, is located at chromosome 11p15
[156]. An extensively studied TH polymorphism known
as (TCAT)n is a tetranucleotide VNTR located in the
first intron of TH, giving five alleles—T6, T7, T8, T9,
and T10 [157]. The alternate splicing process of the
(TCAT)n polymorphism involving the 3′ end of exon 1
and differential exclusion at exon 2 will produce an un-
even regulatory effect due to the different combination
of (TCAT)n repeats [158]. It has also been reported that
the cerebrospinal fluid and serum concentrations of the
metabolites in the dopaminergic pathway of humans
have been altered by this VNTR [159, 160]. Since TH is
the rate-limiting enzyme for the biosynthesis of catechol-
amines, this VNTR has attracted considerable attention
and is a candidate marker for various neuropsychiatric

phenotypes like schizophrenia, mood disorders, alcohol
dependence [161], and personality traits [162]. However,
the association of this polymorphism with obesity is still
elusive as there is scarce data on it. TH mRNA expression
was significantly decreased in the substantia nigra, ventro-
medial hypothalamic nucleus, and ventral tegmental area
of the high-fat-diet-induced obese and obese-resistant
mice compared to controls [163]. Individuals with central
obesity had lower TH expression in their peripheral blood
mononuclear cells (PBMCs) compared with controls, and
TH expression was also significantly negatively correlated
with WC [164]. In our unpublished study, we found that
Malaysian subjects with TH VNTR was not associated
with obesity, but nevertheless, subjects with the T9 allele
had significantly highest SBP and visceral fat level (VFL)
and lowest pulse rate.

VNTR in insulin gene (INS)
Free fatty acid accumulation in the liver, adipose tissue,
and skeletal muscle of obese patients interferes with nor-
mal insulin signaling, which will lead to insulin resist-
ance [165]. As a consequence, increased insulin
production (hyperinsulinemia) in the pancreas is needed
to maintain normal values of glycemia, which, in turn,
converts the liver into a fat-producing factory with all of
its negative downstream effects [165].
A gene that may be involved in the development of

metabolic syndrome is the gene codifying for insulin it-
self (INS). INS is located between TH and the insulin-
like growth factor II gene (IGF2) on 11p15.5 [166].
Within this gene, a VNTR, positioned at 363 bp from
the INS transcription starting site (promoter region), has
been largely studied in cohorts of children and adoles-
cents [167, 168]. Three alleles of INS VNTR have been
observed in Caucasians: the common short class I
(26–63 repeats) and long class III (141–209 repeats)
and the rare class II (about 80 repeats) [168, 169]. Dif-
ferences in steady-state levels of INS mRNA have been
detected in the pancreas of a cadaver adult and fetus
carrying class I and class III alleles, albeit with lower
levels in the latter allele [170, 171].
The INS VNTR has been intensively studied for associ-

ation with glucose metabolism in a number of metabolic
disorders. Initially, class I allele was reported to be asso-
ciated with higher risk of type 1 diabetes in UK families
[168], and this finding has been consistently and reliably
replicated [172]. On the other hand, class III allele was
suggested to associate with higher birth weight [173],
higher adult fasting glucose [174] and infant insulin
[175] levels, and increased risk of T2D [176]. However,
several studies failed to replicate association of class III
allele with fetal growth and birth weight [177, 178] or re-
ported associations with lower birth weight [174, 179].
Findings on the INS VNTR association with T2D were
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also mainly not successfully replicated [180, 181], al-
though a modest association was reported in a family-
based study [182].
The putative contribution of the INS VNTR in the

genetic risk for obesity was first investigated in children.
Strong evidence for a family-based association with 1.8-
fold increased risk of early-onset obesity for class I allele
was found, when this allele is paternally inherited [183].
An earlier study by the same group has suggested higher
insulin levels in obese children carrying the class I allele
[171]. However, several studies of the association of INS
VNTR with body composition and insulin levels in co-
horts of children were inconclusive [184–187]; for ex-
ample, large Finnish birth cohort [180] and UK population
of middle-aged adults [188] studies failed to find any sig-
nificant association. The relevance of studies employing
unrelated individuals has been criticized [189], due to her-
edity complexity and transmission distortion of the INS
VNTR [190]. However, in a family-based design in more
than 1000 French or German Caucasian families, this
VNTR was not associated with childhood obesity and
variance of insulin resistance, insulin secretion, and birth
weight [191].

VNTRs in inflammatory cytokine genes
Interleukin-1 receptor antagonist gene (IL1RA)
Interleukin-1 receptor antagonist (IL-1ra), also known as
IL-1RN, is an endogenous competitive inhibitor of pro-
inflammatory IL-1α and IL-1β [192]. IL-1ra is a proadi-
pogenic factor as it is highly secreted by the white
adipose tissue [193], and IL1RA knockout mice have im-
paired adipogenesis and reduced adipose storage [194].
The IL-1ra level is increased in the serum of obese pa-
tients, correlating with BMI and insulin resistance [195].
A 86-bp VNTR is found within intron 2 of IL1RA, and
to date, six distinct alleles corresponding to 1, 2, 3, 4, 5,
and 6 copies of the VNTR have been identified [196].
The 4-repeat (allele I) and 2-repeat (allele II) are most
frequently found in the general population, while the
other four (alleles III, IV, V, and VI) are rarely observed
[197]. This VNTR, particularly homozygosity for allele
II, has been variably associated with various conditions
such as obesity, inflammatory bowel disease, and coron-
ary artery disease (reviewed in [198]). IL1RA allele II has
a clear influence on IL-1ra circulating levels since in
normal human subjects, its carrier had higher levels than
the noncarrier individuals [199]. With regard to obesity,
two previous Asian studies with relatively small sample
sizes found no significant association between IL1RA
VNTR and BMI in Koreans [200] and North Indians
[201]. Similarly, our study found no association with
BMI value or overall obesity status, but IL1RA II allele
VNTR was associated with higher TBF value and higher
risk for overall adiposity [202].

Interleukin-4 gene (IL4)
IL-4, secreted by activated Th2 lymphocytes, basophils,
and mast cells, executes many biological roles such as
induction of Th2 differentiation, B cell proliferation, and
immunoglobulin class switching [203]. In animal studies,
mice treated with IL-4 had improved insulin sensitivity
and glucose tolerance while lipid accumulation in adi-
pose tissues was inhibited [204, 205], while rats receiving
visceral fat removal surgery had decreased serum IL-4
[206]. The role of IL-4 in modulating adipogenesis has
been established by previous studies [207, 208]. Similar
to IL1RA, IL4 has a 70-bp VNTR polymorphism within
intron 3, and two common alleles are B1 and B2 that
have two and three tandem repeats, respectively [209].
This VNTR could be a functional polymorphism as it
could affect mRNA splicing, leading to different splice
variants [210]. Indeed, the B2 allele has been associated
with a reduced amount of peripheral Th cells which pro-
duce IL-4 [211]. There have been several reports on the
association between the VNTR B1 allele and inflamma-
tory diseases, such as multiple sclerosis [212], rheuma-
toid arthritis [213], and systemic lupus erythematosus
[214]. With regard to obesity, there are limited studies
on this VNTR, where two studies showed no association
[215, 216]. Our study showed that this VNTR was asso-
ciated with overall adiposity status (TBF class), but not
with TBF value after adjustment for ethnicity [202]. A
previous study in north Indians also showed that the
B2B2 genotype was associated with higher risk for
T2D [217].

Other INDELs and VNTRs
Endothelial nitric oxide synthase gene (eNOS/NOS3)
Nitric oxide (NO) is synthesized from L-arginine by ni-
tric oxide synthase (NOS). There are at least three isoen-
zymes of NOS: constitutive neuronal NOS (nNOS or
NOS-1), inducible NOS (iNOS or NOS-2), and constitu-
tive endothelial NOS (eNOS or NOS-3), located on dif-
ferent chromosomes and expressed in different cell lines
[218]. eNOS has been described as a major regulator
of adipose tissue metabolism and energy balance by af-
fecting lipolysis [219]. The adipose tissue and skeletal
muscle of obese humans and rodents have decreased
eNOS [220–222].
eNOS has been reported to possess approximately 303

variations including a VNTR at intron 4, intron 13 with
a CA repeat, and enormous SNPs. There are three
variations which are putatively functional and studied
frequently, namely Glu298Asp, 27-bp VNTR intron 4a/
b, and T-786C [223]. At the 27-bp VNTR, a larger (b)
allele comes with five tandem repeats while a smaller (a)
allele comes with four tandem repeats [223]. Plasma NO
levels were found to be significantly lower in individuals
homozygous for the (b) allele than in those homozygous
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for the (a) allele, suggesting a role of this VNTR in the
regulation of eNOS expression [224, 225]. Indeed, this
VNTR might have a cis-acting role in eNOS promoter
function [226]. Others revealed that this VNTR produces
small microRNAs that induce significant eNOS-specific
transcriptional suppression by altering histone acetyl-
ation and DNA methylation [227]. Specifically, the (b)
allele could result in increased microRNA expression
and reduced eNOS mRNA levels [228]. Overall, these
studies highlight that the (b) allele correlates with re-
duced eNOS expression and reduced NO levels, which
may lead to low fat oxidation over time and a mild pro-
gression of increase in body fat [229].
A pioneer study investigating the effect of this VNTR

on obesity in a sample of the Tunisian population found
that carriers of the (b) allele presented 1.7 times higher
risk of obesity [230]. Correlations with anthropometric
parameters also revealed that carriers of the bb genotype
had significantly higher BMI compared to those homo-
zygous for the (a) allele [231]. Although this VNTR has
not been reported to be associated with T2D, other
eNOS SNPs are associated with T2D [231] and insulin
resistance [232–234]. eNOS SNPs also appear to increase
susceptibility for hypertriglyceridemia and low HDL
[235] and worsen endothelial function in individuals
prone to T2D [236]. However, neither the eNOS VNTR
allele, genotype, nor their combination with angiotensin-
converting enzyme (ACE) INDEL, apolipoprotein E
(APOE ε2, ε3, ε4), and LEP G2548A presented as a risk
for hypertension, elevated triglycerides, and total, LDL,
or HDL cholesterol in the Roma minority population of
Croatia [237].

Angiotensin-converting enzyme gene (ACE)
ACE, a key enzyme in the renin–angiotensin system
(RAS), converts angiotensin I into vasoconstrictor mol-
ecule angiotensin II [238]. Body fat and body weight
could be raised and lowered accordingly by stimulating
and inhibiting the production of Ang II [239], suggesting
a possible link between ACE and obesity (reviewed in
[240]). In 1990, Rigat et al. first described an INDEL in
ACE, defined as either the presence (insertion, I) or ab-
sence (deletion, D) of a 287-bp insert in intron 16 of the
gene on chromosome 17q23 (dbSNP rs1799752) [241].
This INDEL has been proposed as a genetic marker for
a variety of disease conditions (reviewed in [242]), ran-
ging from mainly cardiovascular diseases like essential
hypertension [243], myocardial infarction [244], and
hypertrophic cardiomyopathy [245] to obesity-related
complications such as metabolic syndrome [246], T2D
[247], and reduced HDL-C levels [248].
Research on the association of this INDEL with obesity

specifically has been growing in the past two decades,
mainly showing the role of the D allele or DD genotype

in increased risk for overweight/obesity. The DD geno-
type was associated with larger increases in body weight
and BP in older Italian men, as well as with higher inci-
dence of overweight [249]. Spanish subjects with coron-
ary heart disease (CHD) and DD/ID genotypes had
significantly higher prevalence of obesity and abdominal
fat deposit and higher values of weight and WC [250].
The DD genotype and D allele occurred at a higher
frequency in obese Saudi [251] and Turkish [252] indi-
viduals. The D allele was associated with increased BMI,
WC, and body fat mass in Brazilian boys, independent
of the association with BP [253]. The DD genotype also
heightened the effects of traditional risk factors for obes-
ity, for example by increasing the magnitude of the asso-
ciation between childhood gain in upper body adiposity,
insulin resistance, and hypertriglyceridemia [254] and by
increasing carbohydrate intake in morbidly obese Czech
population [255]. In contrast, our study found that
Malaysian subjects with the II genotype and I allele
were, respectively, 2.15 and 1.55 times more likely to be
centrally obese, but when adjusted for age and ethnicity,
this association was abolished [256]. However, other
studies reported that this INDEL was not associated with
obesity-related traits in overweight sedentary American
women [257], Korean women [258, 259], and a large
sample of Chinese patients with T2D [260].

Dedicator of cytokinesis 5 gene (DOCK5)
In-depth investigation of a complex region on chromo-
some 8p21.2 encompassing DOCK5 which includes two
VNTRs of complex sequence composition (one in 5′
UTR and another in intron 1 of DOCK5) which flank a
common 3975-bp INDEL (in intron 1 of DOCK5) found
a significant association of these VNTRs and INDEL
with childhood and adult severe obesity [261]. Support
for a functional effect of the DOCK5 VNTRs and dele-
tion was also evidenced by the association between
DOCK5 transcript levels and variants in adipose tissue
from a Swedish family sample [261]. The mechanism of
how DOCK5 could contribute to obesity is currently un-
known, but it has been postulated that DOCK5, a mem-
ber of the DOCK family of guanine nucleotide exchange
factors, could bind to protein phosphatase 2 to inactivate
v-akt murine thymoma viral oncogene homolog (Akt)
proteins and mitogen-activated protein kinases 1 and 3
(MAPK1 and 3), modulating the anorectic effects of
leptin [261].

Period circadian clock 3 gene (PER3)
A 54-bp VNTR in exon 18 of PER3 defined as four re-
peats (4 allele) or five repeats (5 allele) in humans [262]
has been associated with sleep behavior [263]. Particu-
larly, the PER3 5/5 genotype was associated with in-
creased morning preference, earlier wake and bed time,
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Table 1 Summary of INDELs and VNTRs that have been studied for association with common polygenic obesity and its related traits
and complications

Gene/nearest gene INDEL/VNTR Type(s) [pivotal reference] Location in human chromosome

FTO INDELs 13 insertions and 27 deletions (1–9 bp)—16 known in
dbSNP and 24 potentially novel [37]

hg18, chr16: 52307514–52699069

LEP VNTR (CTTT)n
Type 1 allele: 121–145 [49] or 146–178 bp [51]
Type 2 allele: 197–225 [49] or 165–193 bp [51]
Type 3 allele: 210–254 bp [51]

3912 bp 3′ of the LEP stop codon
(476 bp 3′ of the 3′ UTR)

LEPR STR/VNTR D1S200: (CA)n; 13–27 repeats; 17 most
common [56, 57]

UniSTS: 56325; Chr1 c.77.73 cM

D1S3728 [58] UniSTS: 56029; Chr1 c.89.49 cM

D1S1665 [58] UniSTS: 60783; Chr1 c.99.62 cM

(CA)n [59] Intron 3 of LEPR

(CTTT)n [59] Intron 16 of LEPR

INDEL CTTTA [60] 3′ UTR of LEPR

TAT [61] 1078Y codon of LEPR

POMC STR/VNTR D2S1788: (GATA)n; 4–20 repeats; 15 most
common [62, 63]

UniSTS: 6210; Chr2 55.51 cM

D2S2170 [55] UniSTS: 60770; Chr2 47.98 cM

D2S144 [55] UniSTS: 68025; Chr2 45.3 cM

D2S1268 [55] UniSTS: 149288; Chr2

D2S1348 [55] UniSTS: 54913; Chr2

D2S2221 [68] UniSTS: 32562; Chr2 46.54 cM

D2S171 [68] UniSTS: 73301; Chr2 149.4 cr3000

D2S2337 [68] UniSTS: 14003; Chr2 47.76 cM

INDEL Trinucleotide repeat (9 bp) [69] Exon 3 of POMC (codon 94)

MC4R STR/VNTR D18S851 [81] UniSTS: 39301; Chr18 382.9 cr3000

D18S487 [81] UniSTS: 84391; Chr18 20924 cr50000

D18S69 [81] UniSTS: 47737; Chr18 2049 cr10000

D18S858 [81]; 8–20 repeats; 11/12 most
common [57]

UniSTS: 14041; Chr18 80.41 cM

D18S849 [81] UniSTS: 15592; Chr18 430.2 cr3000

D18S1155 [81] UniSTS: 32047; Chr18 81.27 cM

D18S64 [81] UniSTS: 17561; Chr18 84.8 cM

D18S38 [81] UniSTS: 14742; Chr18 84.98 cM

UCP2 STR/VNTR D11S912 [4, 57, 81] UniSTS: 72663; Chr11 137.93 cM

INDEL 45 bp [88] 3′ UTR of UCP2 exon 8

SLC6A4/5HTT VNTR 5-HTTLPR 43 bp; 14R (short, S) and 16R (long, L)
alleles [102]

1 kb upstream of the SLC6A4/5HTT
transcription start site

STin2 17 bp; common 10- and 12-repeat alleles
and a rare 9-repeat allele [103, 104]

Intron 2 of SLC6A4/5HTT

SLC6A3/DAT1 VNTR 40 bp; 9-repeat (S) and 10-repeat (L) alleles [118] 3′ UTR of SLC6A3/DAT1

DRD2 INDEL 1 bp; dbSNP rs1799732; -141C [121] 5′ UTR of DRD2

DRD4 VNTR 48 bp; 2–10 repeats; 4-repeat (4R or S) and
7-repeat (7R or L) alleles most common [132]

Exon 3 of DRD4

MAOA VNTR 30 bp; 2-, 3-, 3.5-, 4-, 5-, or 6-repeat copies [151];
3- and 4-repeat alleles most common [146]

Promoter region of MAOA

TH VNTR (TCAT)n; T6, T7, T8, T9, and T10 alleles [157] Intron 1 of TH
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and reduced daytime sleepiness [264]. In a single study,
this VNTR has been investigated for association with
obesity-related anthropometric traits, sleep, and nutri-
tional behavior [265]. No association with obesity was
found. Nevertheless, individuals with the 55 genotype
had a higher percentage of daily energy derived from fat,
had a lower percentage of daily energy derived from car-
bohydrates, and were more prone to an age-dependent
increase in cholesterol intake [265].

Points of concern
A review paper on the role of INDELs and VNTRs in
obesity is virtually nonexistent. Hence, this paper re-
views the types of INDELs and VNTRs that have been
studied for association with obesity and its related traits
and complications, as summarized in Table 1. Some
studies showed significant associations between INDELs/
VNTRs and obesity-related traits whereas other studies
were not the case.
Before the establishment of SNP-based GWAS geno-

typing platforms like SNP microarray, INDELs and
VNTRs were commonly used as a genetic maker for
linkage and candidate gene association analyses of poly-
genic traits including obesity, as evidenced by the nu-
merous obesity sequence tagged sites (STSs) as stated in
the earlier part of the review. This is because genotyping
of INDELs and VNTRs is easy with low-resolution gel
electrophoresis methods. Virtually, obesity loci identified
in the past studies using INDELs or VNTRs were not
replicated in the SNP-based GWAS with enough sample
sizes. It suggests that the many of old-fashioned obesity
loci were unfortunately false positive. Besides insufficient
sample size, these false positive loci could also be attrib-
uted to the other reasons as outlined by Li and Meyre

[10], which include nonheritable phenotype, improper
correction for multiple testing, population stratification,
technical biases, insufficient quality control, or inappro-
priate statistical analyses.
Even if an original study describes a true positive asso-

ciation for a particular INDEL/VNTR, replication could
be challenging, as evidenced by the discrepancies of
findings in the association studies described in this re-
view. Again, the reasons as outlined by Li and Meyre
[10] include underpowered replication samples, inter-
action between genes themselves and with the environ-
ment, genetic heterogeneity (due to ethnicity), phenotypic
heterogeneity (different definitions, measurements, and
categorizations for obesity), and subjective interpretation
of data.
Some of these pitfalls in obesity loci discovery and rep-

lication genetic association studies could be overcome
by following the recommendations by Li and Meyre [10]
and the STrengthening the Reporting of OBservational
studies in Epidemiology - Molecular Epidemiology
(STROBE-ME) statement [266].

Conclusions
INDELs and VNTRs have significant functional conse-
quences by regulating gene transcription, translation ef-
ficiency, and stability of mRNA or by modifying the
activity of proteins by altering their structure. The final
publication of the phase 3 1000 Genomes Project in
October 2015, which has 3.4 million bi-allelic INDELs
and 60,000 structural variants [267], has provided a
marker set for the imputation of genotypes in recent
GWAS. Common INDELs and VNTRs that are in the
promoters and exons or have been studied before in pre-
vious candidate gene association studies could be highly

Table 1 Summary of INDELs and VNTRs that have been studied for association with common polygenic obesity and its related traits
and complications (Continued)

INS VNTR 14–15 bp; short class I allele (~570 bp, 26–63 repeats),
class II alleles (~1320 bp, about 80 repeats), and
the long class III (~2470, 141–209 repeats) [167]

63 bp from the INS transcription
starting site (promoter region)

IL1RA VNTR 86 bp; 1, 2, 3, 4, 5, and 6 repeats; 4-repeat (allele I)
and 2-repeat (allele II) most common [196]

Intron 2 of IL1RA

IL4 VNTR 70 bp; 2-repeat (B1) and 3-repeat (B2) alleles
most common [209]

Intron 3 of IL4

eNOS/NOS3 VNTR 27 bp; 4-repeat (a) and 5-repeat (b) alleles most
common [223]

Intron 4 of eNOS/NOS3

ACE INDEL 287 bp; dbSNP rs1799752 [241] Intron 16 of ACE

DOCK5 VNTR VNTR A; 590–640-bp allele [261] chr8: 25085372–25085875; ~12 kb
upstream of DOCK5

VNTR B; 944–1022-, 1112–1127-, 1073–1084-,
and 1099–1103-bp alleles [261]

chr8: 25129579–25130501; intron 1
of DOCK5

INDEL 3975 bp [261] chr8: 25122602–25126576; intron 1
of DOCK5

PER3 VNTR 54 bp; 4-repeat and 5-repeat alleles [262] Exon 18 of PER3
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prioritized in the candidate gene approach in finding
obesity loci. INDELs and VNTRs would greatly expand
the number of high-scoring variants besides SNPs that
are identified in obesity candidate gene studies and
GWAS. As an association does not always imply causality,
biological insights are essential in increasing the credibility
of the observed genetic association. Therefore, in silico, in
vitro, and ex vivo functional characterization assays of the
INDELs and VNTRs could then be performed, especially
for novel genes, to elucidate the mechanistic effects of the
risk alleles in plausible biological pathways involved in
obesity. This could be followed by comprehensive in vivo
animal studies to ultimately identify the risk allele as a
causal variant for obesity and/or its related traits and com-
plications. Inclusion of INDELs and VNTRs in genetic as-
sociation studies would help in defining the genetic
architecture of complex traits and diseases like obesity
and also to provide new insights into its normal physi-
ology and disease pathophysiology. Identification of the
causal relationships between INDELs and VNTRs and
obesity risk would facilitate the prediction of obesity onset,
early diagnosis of obesity, and the development of novel
and potentially patient-specific therapeutic targets.
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