Arai S. Studies on functional foods in Japan--state of the art. Biosci Biotechnol Biochem. 1996 Jan;60(1):9–15. https://doi.org/10.1271/bbb.60.9.
Article
CAS
PubMed
Google Scholar
Deguchi T, Sato M. The effect of color temperature of lighting sources on mental activity level. Ann Physiol Anthropol. 1992 Jan;11(1):37–43. https://doi.org/10.2114/ahs1983.11.37.
Article
CAS
PubMed
Google Scholar
Kobayashi H, Sato M. Physiological responses to illuminance and color temperature of lighting. Ann Physiol Anthropol. 1992 Jan;11(1):45–9. https://doi.org/10.2114/ahs1983.11.45.
Article
CAS
PubMed
Google Scholar
Mukae H, Sato M. The effect of color temperature of lighting sources on the autonomic nervous functions. Ann Physiol Anthropol. 1992 Sep;11(5):533–8. https://doi.org/10.2114/ahs1983.11.533.
Article
CAS
PubMed
Google Scholar
Higuchi S, Watanuki S, Yasukouchi A, Sato M. Effects of changes in arousal level by continuous light stimulus on contingent negative variation (CNV). Appl Hum Sci. 1997 Mar;16(2):55–60. https://doi.org/10.2114/jpa.16.55.
Article
CAS
Google Scholar
Noguchi H, Sakaguchi T. Effect of illuminance and color temperature on lowering of physiological activity. Appl Hum Sci. 1999 Jul;18(4):117–23. https://doi.org/10.2114/jpa.18.117.
Article
CAS
Google Scholar
Yasukouchi A, Yasukouchi Y, Ishibashi K. Effects of color temperature of fluorescent lamps on body temperature regulation in a moderately cold environment. J Physiol Anthropol Appl Hum Sci. 2000 May;19(3):125–34. https://doi.org/10.2114/jpa.19.125.
Article
CAS
Google Scholar
Yasukouchi A, Ishibashi K. Non-visual effects of the color temperature of fluorescent lamps on physiological aspects in humans. J Physiol Anthropol Appl Hum Sci. 2005 Jan;24(1):41–3. https://doi.org/10.2114/jpa.24.41.
Article
Google Scholar
Katsuura T, Jin X, Baba Y, Shimomura Y, Iwanaga K. Effects of color temperature of illumination on physiological functions. J Physiol Anthropol Appl Hum Sci. 2005 Jul;24(4):321–5. https://doi.org/10.2114/jpa.24.321.
Article
Google Scholar
Yasukouchi A, Hazama T, Kozaki T. Variations in the light-induced suppression of nocturnal melatonin with special reference to variations in the pupillary light reflex in humans. J Physiol Anthropol. 2007 Mar;26(2):113–21. https://doi.org/10.2114/jpa2.26.113.
Article
PubMed
Google Scholar
Katsuura T, Lee S. A review of the studies on nonvisual lighting effects in the field of physiological anthropology. J Physiol Anthropol. 2019 Jan 22;38(1):2. https://doi.org/10.1186/s40101-018-0190-x.
Article
PubMed
PubMed Central
Google Scholar
Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002 Feb 8;295(5557):1070–3. https://doi.org/10.1126/science.1067262.
Article
CAS
PubMed
Google Scholar
Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. 2002 Feb 8;295(5557):1065–70. https://doi.org/10.1126/science.1069609.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hatori M, Panda S. The emerging roles of melanopsin in behavioral adaptation to light. Trends Mol Med. 2010 Oct;16(10):435–46. https://doi.org/10.1016/j.molmed.2010.07.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bailes HJ, Lucas RJ. Human melanopsin forms a pigment maximally sensitive to blue light (lambdamax approximately 479 nm) supporting activation of G(q/11) and G(i/o) signalling cascades. Proceedings Biological sciences / The Royal Society. 2013;280(1759):20122987. https://doi.org/10.1098/rspb.2012.2987.
Article
CAS
Google Scholar
Daneault V, Dumont M, Masse E, Vandewalle G, Carrier J. Light-sensitive brain pathways and aging. J Physiol Anthropol. 2016;35(1):9. https://doi.org/10.1186/s40101-016-0091-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee S, Uchiyama Y, Shimomura Y, Katsuura T. Subadditive responses to extremely short blue and green pulsed light on visual evoked potentials, pupillary constriction and electroretinograms. J Physiol Anthropol. 2017 Nov 17;36(1):39. https://doi.org/10.1186/s40101-017-0156-4.
Article
PubMed
PubMed Central
Google Scholar
Higuchi S, Fukuda T, Kozaki T, Takahashi M, Miura N. Effectiveness of a red-visor cap for preventing light-induced melatonin suppression during simulated night work. J Physiol Anthropol. 2011;30(6):251–8. https://doi.org/10.2114/jpa2.30.251.
Article
PubMed
Google Scholar
Yuda E, Ogasawara H, Yoshida Y, Hayano J. Enhancement of autonomic and psychomotor arousal by exposures to blue wavelength light: importance of both absolute and relative contents of melanopic component. J Physiol Anthropol. 2017 Jan 31;36(1):13. https://doi.org/10.1186/s40101-017-0126-x.
Article
PubMed
PubMed Central
Google Scholar
Yuda E, Ogasawara H, Yoshida Y, Hayano J. Suppression of vagal cardiac modulation by blue light in healthy subjects. J Physiol Anthropol. 2016;35(1):24. https://doi.org/10.1186/s40101-016-0110-x.
Article
PubMed
PubMed Central
Google Scholar
Yuda E, Ogasawara H, Yoshida Y, Hayano J. Exposure to blue light during lunch break: effects on autonomic arousal and behavioral alertness. J Physiol Anthropol. 2017 Jul 11;36(1):30. https://doi.org/10.1186/s40101-017-0148-4.
Article
PubMed
PubMed Central
Google Scholar
Morita T, Tokura H, Wakamura T, Park SJ, Teramoto Y. Effects of the morning irradiation of light with different wavelengths on the behavior of core temperature and melatonin in humans. Appl Hum Sci. 1997 May;16(3):103–5. https://doi.org/10.2114/jpa.16.103.
Article
CAS
Google Scholar
Kozaki T, Toda N, Noguchi H, Yasukouchi A. Effects of different light intensities in the morning on dim light melatonin onset. J Physiol Anthropol. 2011;30(3):97–102. https://doi.org/10.2114/jpa2.30.97.
Article
PubMed
Google Scholar
Kozaki T, Hidaka Y, Takakura JY, Kusano Y. Suppression of salivary melatonin secretion under 100-Hz flickering and non-flickering blue light. J Physiol Anthropol. 2018 Oct 19;37(1):23. https://doi.org/10.1186/s40101-018-0183-9.
Article
PubMed
PubMed Central
Google Scholar
Yasukouchi A, Maeda T, Hara K, Furuune H. Non-visual effects of diurnal exposure to an artificial skylight, including nocturnal melatonin suppression. J Physiol Anthropol. 2019 Aug 28;38(1):10. https://doi.org/10.1186/s40101-019-0203-4.
Article
PubMed
PubMed Central
Google Scholar
Kozaki T, Kitamura S, Higashihara Y, Ishibashi K, Noguchi H, Yasukouchi A. Effect of color temperature of light sources on slow-wave sleep. J Physiol Anthropol Appl Hum Sci. 2005 Mar;24(2):183–6. https://doi.org/10.2114/jpa.24.183.
Article
Google Scholar
Ishibashi K, Kitamura S, Kozaki T, Yasukouchi A. Inhibition of heart rate variability during sleep in humans by 6700 K pre-sleep light exposure. J Physiol Anthropol. 2007 Jan;26(1):39–43. https://doi.org/10.2114/jpa2.26.39.
Article
PubMed
Google Scholar
Czeisler CA. Perspective: casting light on sleep deficiency. Nature. 2013 May 23;497(7450):S13. https://doi.org/10.1038/497S13a.
Article
CAS
PubMed
Google Scholar
Chang AM, Aeschbach D, Duffy JF, Czeisler CA. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc Natl Acad Sci U S A. 2015 Jan 27;112(4):1232–7. https://doi.org/10.1073/pnas.1418490112.
Article
CAS
PubMed
Google Scholar
Hatori M, Gronfier C, Van Gelder RN, Bernstein PS, Carreras J, Panda S, et al. Global rise of potential health hazards caused by blue light-induced circadian disruption in modern aging societies. NPJ Aging Mech Dis. 2017;3(1):9. https://doi.org/10.1038/s41514-017-0010-2.
Article
PubMed
PubMed Central
Google Scholar
Yuda E, Yoshida Y, Ueda N, Hayano J. Difference in autonomic nervous effect of blue light depending on the angle of incidence on the eye. BMC Res Notes. 2020 Mar 10;13(1):141. https://doi.org/10.1186/s13104-020-04988-5.
Article
PubMed
PubMed Central
Google Scholar
Price LLA. Report on the First International Workshop on Circadian and Neurophysiological Photometry, 2013. International Commission on Illumination, 2015 CIE TN 003:2015.
Enezi J, Revell V, Brown T, Wynne J, Schlangen L, Lucas R. A "melanopic" spectral efficiency function predicts the sensitivity of melanopsin photoreceptors to polychromatic lights. J Biol Rhythm. 2011 Aug;26(4):314–23. https://doi.org/10.1177/0748730411409719.
Hayano J, Taylor JA, Mukai S, Okada A, Watanabe Y, Takata K, et al. Assessment of frequency shifts in R-R interval variability and respiration with complex demodulation. J Appl Physiol (1985). 1994 Dec;77(6):2879–88.
Article
CAS
Google Scholar
Hayano J, Taylor JA, Yamada A, Mukai S, Hori R, Asakawa T, et al. Continuous assessment of hemodynamic control by complex demodulation of cardiovascular variability. Am J Phys. 1993 Apr;264(4 Pt 2):H1229–38. https://doi.org/10.1152/ajpheart.1993.264.4.H1229.
Article
CAS
Google Scholar
Hayano J, Yuda E. Pitfalls of assessment of autonomic function by heart rate variability. J Physiol Anthropol. 2019 Mar 13;38(1):3. https://doi.org/10.1186/s40101-019-0193-2.
Article
PubMed
PubMed Central
Google Scholar
Khitrov MY, Laxminarayan S, Thorsley D, Ramakrishnan S, Rajaraman S, Wesensten NJ, et al. PC-PVT: a platform for psychomotor vigilance task testing, analysis, and prediction. Behav Res Methods. 2014 Mar;46(1):140–7. https://doi.org/10.3758/s13428-013-0339-9.
Article
PubMed
Google Scholar
Yuda E, Yoshida Y, Ueda N, Kaneko I, Miura Y, Hayano J. Effects of aging on foot pedal responses to visual stimuli. J Physiol Anthropol. 2020 Feb 14;39(1):3. https://doi.org/10.1186/s40101-020-0213-2.
Article
PubMed
PubMed Central
Google Scholar
Stevens RG, Brainard GC, Blask DE, Lockley SW, Motta ME. Adverse health effects of nighttime lighting: comments on American Medical Association policy statement. Am J Prev Med. 2013 Sep;45(3):343–6. https://doi.org/10.1016/j.amepre.2013.04.011.
Article
PubMed
Google Scholar
Stevens RG, Brainard GC, Blask DE, Lockley SW, Motta ME. Breast cancer and circadian disruption from electric lighting in the modern world. CA Cancer J Clin. 2014 May-Jun;64(3):207–18. https://doi.org/10.3322/caac.21218.
Article
PubMed
Google Scholar
Tosini G, Ferguson I, Tsubota K. Effects of blue light on the circadian system and eye physiology. Mol Vis. 2016;22:61–72.
CAS
PubMed
PubMed Central
Google Scholar
Hayano J, Yasuma F. Hypothesis: respiratory sinus arrhythmia is an intrinsic resting function of cardiopulmonary system. Cardiovasc Res. 2003;58(1):1–9. https://doi.org/10.1016/S0008-6363(02)00851-9.
Article
CAS
PubMed
Google Scholar
Graw P, Krauchi K, Knoblauch V, Wirz-Justice A, Cajochen C. Circadian and wake-dependent modulation of fastest and slowest reaction times during the psychomotor vigilance task. Physiol Behav. 2004 Feb;80(5):695–701. https://doi.org/10.1016/j.physbeh.2003.12.004.
Article
CAS
PubMed
Google Scholar
Gamlin PD, McDougal DH, Pokorny J, Smith VC, Yau KW, Dacey DM. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vis Res. 2007 Mar;47(7):946–54. https://doi.org/10.1016/j.visres.2006.12.015.
Article
CAS
PubMed
Google Scholar
Adhikari P, Zele AJ, Feigl B. The Post-Illumination Pupil Response (PIPR). Invest Ophthalmol Vis Sci. 2015 Jun;56(6):3838–49. https://doi.org/10.1167/iovs.14-16233.
Article
CAS
PubMed
Google Scholar
Herbst K, Sander B, Lund-Andersen H, Broendsted AE, Kessel L, Hansen MS, et al. Intrinsically photosensitive retinal ganglion cell function in relation to age: a pupillometric study in humans with special reference to the age-related optic properties of the lens. BMC Ophthalmol. 2012 Apr 3;12(1):4. https://doi.org/10.1186/1471-2415-12-4.
Article
PubMed
PubMed Central
Google Scholar
Kankipati L, Girkin CA, Gamlin PD. Post-illumination pupil response in subjects without ocular disease. Invest Ophthalmol Vis Sci. 2010 May;51(5):2764–9. https://doi.org/10.1167/iovs.09-4717.
Article
PubMed
PubMed Central
Google Scholar
Adhikari P, Pearson CA, Anderson AM, Zele AJ, Feigl B. Effect of Age and Refractive Error on the Melanopsin Mediated Post-Illumination Pupil Response (PIPR). Sci Rep. 2015 Dec 1;5(1):17610. https://doi.org/10.1038/srep17610.
Article
CAS
PubMed
PubMed Central
Google Scholar
Michael R, Bron AJ. The ageing lens and cataract: a model of normal and pathological ageing. Philos Trans R Soc Lond Ser B Biol Sci. 2011 Apr 27;366(1568):1278–92. https://doi.org/10.1098/rstb.2010.0300.
Article
CAS
Google Scholar
Bonmati-Carrion MA, Arguelles-Prieto R, Martinez-Madrid MJ, Reiter R, Hardeland R, Rol MA, et al. Protecting the melatonin rhythm through circadian healthy light exposure. Int J Mol Sci. 2014 Dec 17;15(12):23448–500. https://doi.org/10.3390/ijms151223448.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kozaki T, Kubokawa A, Taketomi R, Hatae K. Effects of day-time exposure to different light intensities on light-induced melatonin suppression at night. J Physiol Anthropol. 2015 Jul 4;34(1):27. https://doi.org/10.1186/s40101-015-0067-1.
Article
PubMed
PubMed Central
Google Scholar
Nagashima S, Osawa M, Matsuyama H, Ohoka W, Ahn A, Wakamura T. Bright-light exposure during daytime sleeping affects nocturnal melatonin secretion after simulated night work. Chronobiol Int. 2018 Feb;35(2):229–39. https://doi.org/10.1080/07420528.2017.1394321.
Article
CAS
PubMed
Google Scholar