Córdova-Villalobos J, Meléndez J, Lara-Esqueda A, et al. Chronic non-communicable diseases in Mexico: epidemiologic synopsis and integral prevention. Salud Pública Méx. 2008;50:419–27.
Article
PubMed
Google Scholar
De Fronzo R, Ferrannini E. Insulin resistance: a multifocal syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14:173–94.
Article
Google Scholar
Stern M. The insulin resistance syndrome: the controversy is dead, long live the controversy. Diabetologia. 1994;37:956–8. https://doi.org/10.1007/BF00400955.
Article
CAS
PubMed
Google Scholar
Isomma B, Almgren P, Tuomi T, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001;24:683–9. https://doi.org/10.2337/diacare.24.4.683.
Article
Google Scholar
Groop L. Genetics of the metabolic syndrome. Br J Nutr. 2000;83:39–48. https://doi.org/10.1017/s0007114500000945.
Article
Google Scholar
Beck-Nielsen H, Groop L. Metabolic and genetic characterization of prediabetic states. Sequence of events leading to non-insulin dependent diabetes mellitus. J Clin Invest. 1994;94:1714–21. https://doi.org/10.1172/JCI117518.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frayling T, Timpson N, Weedon M, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–94. https://doi.org/10.1126/science.1141634.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dina C, Meyre D, Gallina S, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 2007;39:724–6. https://doi.org/10.1038/ng2048.
Article
CAS
PubMed
Google Scholar
Scuteri A, Sanna S, Chen W, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007;3:1200–10. https://doi.org/10.1371/journal.pgen.0030115.
Article
CAS
Google Scholar
Chang Y, Liu P, Lee W, et al. Common variation in the fat mass and obesity-associated (FTO) gene confers risk of obesity and modulates BMI in the Chinese population. Diabetes. 2008;57:2245–52. https://doi.org/10.2337/db08-0377.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fang H, Li Y, Du S, et al. Variant rs9939609 in the FTO gene is associated with body mass index among Chinese children. BMC Med Genet. 2010;11:136. https://doi.org/10.1186/1471-2350-11-136.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grant S, Li M, Bradfield J, et al. Association analysis of the FTO gene with obesity in children of Caucasian and African ancestry reveals a common tagging SNP. PLoS One. 2008;3:1746. https://doi.org/10.1371/journal.pone.0001746.
Article
CAS
Google Scholar
Song Y, You N, Hsu Y, et al. FTO polymorphisms are associated with obesity but not diabetes risk in postmenopausal women. Obesity. 2008;16:2472–80. https://doi.org/10.1038/oby.2008.408.
Article
CAS
PubMed
Google Scholar
Villalobos M, Flores M, Villarreal M, et al. The FTO gene is associated with adulthood obesity in the Mexican population. Obesity. 2008;16:2296–301. https://doi.org/10.1038/oby.2008.367.
Article
CAS
Google Scholar
León P, Villamil H, Villalobos M, et al. Contribution of common genetic variants to obesity and obesity-related traits in Mexican children and adults. PLoS One. 2013;8:70640. https://doi.org/10.1371/journal.pone.0070640.
Article
CAS
Google Scholar
Saber-Ayad M, Manzoor S, El Serafi A, Mahmoud I, Hammoudeh S, Rani A, Abusnana S, Sulaiman N. The FTO rs9939609 “A” allele is associated with impaired fasting glucose and insulin resistance in Emirati population. Gene. 2019;10(681):93–8. https://doi.org/10.1016/j.gene.2018.09.053. Epub 2018 Sep 29. PMID: 30273662.
Article
CAS
Google Scholar
Taneera J, Prasad RB, Dhaiban S, Mohammed AK, Haataja L, Arvan P, et al. Silencing of the FTO gene inhibits insulin secretion: an in vitro study using GRINCH cells. Mol Cell Endocrinol. 2018. https://doi.org/10.1016/j.mce.2018.06.003.
Shimaoka I, Kamide K, Ohishi M, Katsuya T, Akasaka H, Saitoh S, et al. Association of gene polymorphism of the fat-mass and obesity-associated gene with insulin resistance in Japanese. Hypertens Res. 2010;33(3):214–8.
Article
CAS
PubMed
Google Scholar
Flores E, Ochoa-Díaz-López H, Castro-Quezada I, et al. Intrauterine growth restriction and overweight, obesity, and stunting in adolescents of indigenous communities of Chiapas, Mexico. Eur J Clin Nutr. 2020;74:149–57. https://doi.org/10.1038/s41430-019-0440-y.
Article
Google Scholar
Causa R, Ochoa-Díaz-López H, Dor A, Rodríguez F, Solís R, Pacheco A. Emerging arboviruses (dengue, chikungunya, and Zika) in Southeastern Mexico: influence of socio-environmental determinants on knowledge and practices. Cad Saúde Pública. 2020;36:e00110519. https://doi.org/10.1590/0102-311x00110519.
Article
PubMed
Google Scholar
Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–5. https://doi.org/10.1161/CIRCULATIONAHA.109.192644.
Article
CAS
PubMed
Google Scholar
The Population Architecture using Genomics and Epidemiology (PAGE) study. https://www.pagestudy.org. Accessed 10 Mar 2020.
Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43. https://doi.org/10.1038/s41586-020-2308-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aguilar C, Rojas R, Gómez F, et al. High prevalence of metabolic syndrome in Mexico. Arch Med Res. 2004;35:76–81. https://doi.org/10.1016/j.arcmed.2003.06.006.
Article
Google Scholar
Lorenzo C, Williams K, González C, Haffner S. The prevalence of the metabolic syndrome did not increase in Mexico City between 1990–1992 and 1997–1999 despite more central obesity. Diabetes Care. 2005;28:2480–5. https://doi.org/10.2337/diacare.28.10.2480.
Article
PubMed
Google Scholar
Castro C, Hernández V, Arjona R. Prevalencia de Síndrome Metabólico en sujetos adultos que viven en Mérida, Yucatán, Mexico. Rev Bioméd. 2001;22:49–58. https://doi.org/10.32776/revbiomed.v22i2.100.
Article
Google Scholar
Gutiérrez A, Datta S, Méndez R. Prevalence of metabolic syndrome in Mexico: a systematic review and meta-analysis. Metab Syndr Relat Disord. 2018;16:395–405. https://doi.org/10.1089/met.2017.0157.
Article
Google Scholar
Ruiz W, Gurri FD. La doble carga de la transición nutricional en zonas rurales de la frontera sur. In: Ochoa H, Academia Nacional de Medicina de México, editors. La Frontera sur de México, ¿Una salud en crisis?. CDMX: Academia Nacional de Medicina de México; 2018. p. 39–48.
Cruz M, Valladares A, Garcia J, et al. Candidate gene association study conditioning on individual ancestry in patients with type 2 diabetes and metabolic syndrome from Mexico City. Diabetes Metab Res Rev. 2010;26:261–70. https://doi.org/10.1002/dmrr.1082.
Article
CAS
PubMed
Google Scholar
Wardle J, Carnell S, Haworth C, Farooqi I, O’Rahilly S, Plomin R. Obesity associated genetic variation in FTO is associated with diminished satiety. J Clin Endocrinol Metab. 2008;3:3640–3. https://doi.org/10.1210/jc.2008-0472.
Article
CAS
Google Scholar
Tanofsky M, Han J, Anandalingam K, et al. The FTO gene rs9939609 obesity-risk allele and loss of control over eating. Am J Clin Nutr. 2009;90:1483–14888. https://doi.org/10.3945/ajcn.2009.28439.
Article
CAS
Google Scholar
Cecil J, Tavendale R, Watt P, Hetherington M, Palmer C. An obesity-associated FTO gene variant and increased energy intake in children. N Engl J Med. 2008;359:2558–66. https://doi.org/10.1056/NEJMoa0803839.
Article
CAS
PubMed
Google Scholar
Qi Q, Downer M, Kilpelainen T, et al. Dietary intake, FTO genetic variants, and adiposity: a combined analysis of over 16,000 children and adolescents. Diabetes. 2015;64:2467–76. https://doi.org/10.2337/db14-1629.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanaka T, Ngwa J, van-Rooij FJA, et al. Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake. Am J Clin Nutr. 2013;97:1395–402. https://doi.org/10.3945/ajcn.112.052183.
Article
CAS
PubMed
PubMed Central
Google Scholar
Timpson N, Emmett P, Frayling T, et al. The fat mass- and obesity-associated locus and dietary intake in children. Am J Clin Nutr. 2008;88:971–8. https://doi.org/10.1093/ajcn/88.4.971.
Article
CAS
PubMed
Google Scholar
Livingstone K, Celis C, Lara J, et al. Associations between FTO genotype and total energy and macronutrient. Obes Rev. 2015;16:666–78. https://doi.org/10.1111/obr.12290.
Article
CAS
PubMed
Google Scholar
Steemburgo T, Azevedo M, Gross J, Milagro F, Campion J, Martínez J. The rs9939609 polymorphism in the FTO gene is associated with fat and fiber intakes in patients with type 2 diabetes. J Nutrigenet Nutrigenomics. 2013;6:97–106. https://doi.org/10.1159/000350741.
Article
CAS
PubMed
Google Scholar
Speakman J, Rance K, Johnstone A. Polymorphisms of the FTO gene are associated with variation in energy intake, but not energy expenditure. Obesity. 2008;16:1961–5. https://doi.org/10.1038/oby.2008.318.
Article
CAS
PubMed
Google Scholar
Hinney A, Nguyen TT, Scherag A, et al. Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS One. 2007;2:e1361. https://doi.org/10.1371/journal.pone.0001361.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sikhayeva N, Iskakova A, Saigi-Morgui N, Zholdybaeva E, Eap CB, Ramanculov E. Association between 28 single nucleotide polymorphisms and type 2 diabetes mellitus in the Kazakh population: a case-control study. BMC Med Genet. 2017;18:76. https://doi.org/10.1186/s12881-017-0443-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lappalainen T, Kolehmainen M, Schwab U, et al. Association of the FTO gene variant (rs9939609) with cardiovascular disease in men with abnormal glucose metabolism - the Finnish Diabetes Prevention Study. Nutr Metab Cardiovasc Dis. 2011;21:691–8. https://doi.org/10.1016/j.numecd.2010.01.006.
Article
CAS
PubMed
Google Scholar
Szkup M, Owczarek AJ, Schneider D, Brodowski J, Łój B, Grochans E. Associations between the components of metabolic syndrome and the polymorphisms in the peroxisome proliferator-activated receptor gamma (PPAR-γ), the fat mass and obesity-associated (FTO), and the mela-nocortin-4 receptor (MC4R) genes. Aging. 2018;10:72–82. https://doi.org/10.18632/aging.101360.
Article
CAS
PubMed
PubMed Central
Google Scholar
López G, Estrada A, Suárez T, Tejero M, Fernández J, Galván M. Common polymorphisms in MC4R and FTO genes are associated with BMI and metabolic indicators in Mexican children: differences by sex and genetic ancestry. Gene. 2020;754:144840. https://doi.org/10.1016/j.gene.2020.144840.
Article
CAS
Google Scholar
Saucedo R, Valencia J, Gutierrez C, et al. Gene variants in the FTO gene are associated with adiponectin and TNF-alpha levels in gestational diabetes mellitus. Diabetol Metab Syndr. 2017;9:32. https://doi.org/10.1186/s13098-017-0234-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiménez A, Musalem C, Cárdenas H, et al. Common polymorphisms linked to obesity and cardiovascular disease in Europeans and Asians are associated with type 2 diabetes in Mexican Mestizos. Medicina (Kaunas). 2019;55:40. https://doi.org/10.3390/medicina55020040.
Article
Google Scholar